On the use of artificial intelligence in predicting the compressive strength of various cardboard packaging

人工神经网络 过程(计算) 灵敏度(控制系统) 集合(抽象数据类型) 计算机科学 工程类 人工智能 电子工程 程序设计语言 操作系统
作者
Tomasz Gajewski,Jakub Krzysztof Grabski,Aram Cornaggia,Tomasz Garbowski
出处
期刊:Packaging Technology and Science [Wiley]
卷期号:37 (2): 97-105 被引量:6
标识
DOI:10.1002/pts.2783
摘要

Abstract Artificial intelligence is increasingly used in various branches of engineering. In this article, artificial neural networks are used to predict the crush resistance of corrugated packaging. Among the analysed packages were boxes with ventilation openings, packages with perforations and typical flap boxes, which make the proposed estimation method very universal. Typical shallow feedforward networks were used, which are perfect for regression problems, mainly when the set of input and output parameters is small, so no complicated architecture or advanced learning techniques are required. The input parameters of the neural networks are selected so as to take into account not only the material used for the production of the packaging but also the dimensions of the box and the impact of ventilation holes and perforations on the load capacity of individual walls of the packaging. In order to maximize the effectiveness of neural network training process, the group of input parameters was changed so as to eliminate those to which the sensitivity of the model was the lowest. This allowed the selection of the optimal configuration of training pairs for which the estimation error was on the acceptable level. Finally, models of neural networks were selected, for which the training and testing error did not exceed 10%. The demonstrated effectiveness allows us to conclude that the proposed set of universal input parameters is suitable for efficient training of a single neural network model capable of predicting the compressive strength of various types of corrugated packaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凌柏完成签到,获得积分10
1秒前
1秒前
bee完成签到 ,获得积分10
2秒前
4秒前
天天摸鱼完成签到,获得积分10
7秒前
高大侠发布了新的文献求助10
7秒前
lipppu发布了新的文献求助10
9秒前
唠叨的傲薇完成签到 ,获得积分10
9秒前
科研通AI5应助比大家采纳,获得10
12秒前
SciGPT应助阿海的采纳,获得10
13秒前
逆天大脚完成签到,获得积分10
15秒前
None发布了新的文献求助10
18秒前
21秒前
underunder完成签到,获得积分10
22秒前
24秒前
可爱的函函应助wenbin采纳,获得10
24秒前
稳重奇异果应助梅子酒采纳,获得20
24秒前
nicelily完成签到 ,获得积分10
24秒前
26秒前
27秒前
流水完成签到 ,获得积分10
28秒前
符寄柔发布了新的文献求助10
29秒前
29秒前
30秒前
32秒前
33秒前
ergatoid完成签到,获得积分10
34秒前
欢喜的天空完成签到,获得积分20
34秒前
香蕉觅云应助大坚果采纳,获得20
36秒前
37秒前
38秒前
42秒前
文献看不懂应助火花采纳,获得10
42秒前
43秒前
活力的雨雪完成签到,获得积分10
44秒前
45秒前
思源应助lipppu采纳,获得10
45秒前
王清水完成签到 ,获得积分10
45秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893