亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time discrimination of contamination source composed of multiple pollutants in surface water based on deep learning and UV–Vis spectral abundance estimation methodology

污染 污染物 环境科学 水污染 鉴定(生物学) 污水 地表水 计算机科学 环境工程 环境化学 化学 生态学 植物 有机化学 生物
作者
Qingbo Li,Rui Liu,Zhiqi Bi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:307: 123635-123635 被引量:4
标识
DOI:10.1016/j.saa.2023.123635
摘要

Water resources are one of the most important strategic resources for human survival and development. At present, surface water pollution incidents occur frequently, most of which are caused by enterprises' over-discharge, stolen discharge, and other activities to evade supervision. Automatic and rapid determination of pollution source types is conducive to further targeting pollution-causing enterprises and realizing scientific accountability in law enforcement. The existing method mainly adopts the pattern recognition method for pollution discrimination, which is only suitable for the situation of a single source of pollutant, and cannot identify the pollution for multiple pollution sources mixed surface water. To solve the problem of identification of mixed chemical pollutants in surface water pollution sources and identification of simultaneous emission of multiple pollution sources, a total pollution source analysis method based on spectral unmixing is proposed in this paper, which is a radial basis bilinear mixing model automatic encoder algorithm. The unsupervised autoencoder neural network method was used to solve the proportion of water pollution types by using the spectral database of water pollution sources to realize the identification function of water pollution types and determine the types of pollutant discharge enterprises. In this paper, surface water was collected as experimental samples, mixed with domestic sewage, industrial sewage, agricultural sewage, and other pollution sources, and simulated experiments were carried out to estimate the type and proportion of water pollution. Experimental results show that the detection accuracy of the proposed algorithm is significantly improved compared with the traditional algorithm. Among them, the accuracy of judging whether there is industrial sewage in the mixed experiment of three types of pollution is as high as 95.2%. This method provides an important basis for pollution source investigation and accountability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
16秒前
20秒前
26秒前
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
dominic12361完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
无情的水香完成签到 ,获得积分10
2分钟前
zw发布了新的文献求助10
2分钟前
kokishi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
汉堡包应助有魅力的半蕾采纳,获得10
5分钟前
5分钟前
miooo发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494004
求助须知:如何正确求助?哪些是违规求助? 4591889
关于积分的说明 14434935
捐赠科研通 4524510
什么是DOI,文献DOI怎么找? 2478803
邀请新用户注册赠送积分活动 1463758
关于科研通互助平台的介绍 1436596