Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model

Boosting(机器学习) 超参数 梯度升压 均方误差 荷电状态 计算机科学 网格 电动汽车 电池(电) 算法 机器学习 随机森林 数学 统计 量子力学 物理 功率(物理) 几何学
作者
Shuang Wen,Ni Lin,Shengxu Huang,Zhenpo Wang,Zhaosheng Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:284: 129246-129246 被引量:30
标识
DOI:10.1016/j.energy.2023.129246
摘要

Accurate state of health (SOH) estimation of batteries in vehicle-to-grid (V2G) applications is critical for the safety of vehicles, chargers, and grids. In this paper, a novel SOH estimation model based on inverse ampere-time integration and natural gradient boosting (NGBoost) is proposed and verified by real operating data from V2G electric vehicles (EVs). Raw data is segmented, where segments of charging and grid-feeding with relatively smooth currents are selected to constitute the dataset for research. On top of this, five model inputs have been selected through Pearson correlation and physical meaning analysis. Hyperparameters of the model are optimized and model performance is compared with the other nine commonly used machine learning methods. The results show that the NGBoost model has the highest estimation accuracy with the mean absolute percentage error and root mean squared error of 1.484% and 2.302 A h, respectively. To increase the transparency of the model, the Shapley additive explanation (SHAP) method is utilized to provide a full explanation of its predictions. Furthermore, the model is validated to be robust to noise and shows great potential for integration into embedded battery management systems for fast and accurate SOH estimation in V2G applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
吧KO完成签到,获得积分10
2秒前
curtisness应助包容凌翠采纳,获得10
2秒前
3秒前
燕儿应助科研通管家采纳,获得10
4秒前
leaolf应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
落林樾发布了新的文献求助10
5秒前
LaTeXer应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
燕儿应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
自信续应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
Zx_1993应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
俺村俺最牛完成签到,获得积分10
8秒前
8秒前
8秒前
healer发布了新的文献求助10
9秒前
9秒前
陌欣冉完成签到 ,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776841
求助须知:如何正确求助?哪些是违规求助? 4108491
关于积分的说明 12709305
捐赠科研通 3829912
什么是DOI,文献DOI怎么找? 2112722
邀请新用户注册赠送积分活动 1136517
关于科研通互助平台的介绍 1020330