Predicting the Gas Permeability of Sustainable Cement Mortar Containing Internal Cracks by Combining Physical Experiments and Hybrid Ensemble Artificial Intelligence Algorithms

灰浆 磁导率 水泥 人工智能 机器学习 算法 材料科学 工程类 计算机科学 复合材料 化学 生物化学
作者
Zhiming Chao,Chuanxin Yang,Wenbing Zhang,Ye Zhang,Jiaxin Zhou
出处
期刊:Materials [MDPI AG]
卷期号:16 (15): 5330-5330 被引量:5
标识
DOI:10.3390/ma16155330
摘要

The presence of internal fissures holds immense sway over the gas permeability of sustainable cement mortar, which in turn dictates the longevity and steadfastness of associated edifices. Nevertheless, predicting the gas permeability of sustainable cement mortar that contains internal cracks poses a significant challenge due to the presence of numerous influential variables and intricate interdependent mechanisms. To solve the deficiency, this research establishes an innovative machine learning algorithm via the integration of the Mind Evolutionary Algorithm (MEA) with the Adaptive Boosting Algorithm-Back Propagation Artificial Neural Network (ABA-BPANN) ensemble algorithm to predict the gas permeability of sustainable cement mortar that contains internal cracks, based on the results of 1452 gas permeability tests. Firstly, the present study employs the MEA-tuned ABA-BPANN model as the primary tool for gas permeability prediction in cement mortar, a comparative analysis is conducted with conventional machine learning models such as Particle Swarm Optimisation Algorithm (PSO) and Genetic Algorithm (GA) optimised ABA-BPANN, MEA optimised Extreme Learning Machine (ELM), and BPANN. The efficacy of the MEA-tuned ABA-BPANN model is verified, thereby demonstrating its proficiency. In addition, the sensitivity analysis conducted with the aid of the innovative model has revealed that the gas permeability of durable cement mortar incorporating internal cracks is more profoundly affected by the dimensions and quantities of such cracks than by the stress conditions to which the mortar is subjected. Thirdly, puts forth a novel machine-learning model, which enables the establishment of an analytical formula for the precise prediction of gas permeability. This formula can be employed by individuals who lack familiarity with machine learning skills. The proposed model, namely the MEA-optimised ABA-BPANN algorithm, exhibits significant potential in accurately estimating the gas permeability of sustainable cement mortar that contains internal cracks in varying stress environments. The study highlights the algorithm’s ability to offer essential insights for designing related structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助冷水鱼采纳,获得10
刚刚
梓榆完成签到,获得积分10
1秒前
YTWen发布了新的文献求助10
1秒前
1秒前
2秒前
罗罗完成签到,获得积分10
2秒前
zhuzhu发布了新的文献求助10
2秒前
不与旋覆给五十的求助进行了留言
2秒前
科研通AI6应助CBWKEYANTONG123采纳,获得10
2秒前
3秒前
星辰大海应助CUI采纳,获得10
4秒前
5秒前
核桃应助粥粥采纳,获得30
5秒前
a成发布了新的文献求助10
5秒前
5秒前
勤劳钧完成签到,获得积分10
6秒前
情怀应助猪猪比特采纳,获得10
6秒前
123shl发布了新的文献求助10
7秒前
科研通AI6应助ZSH采纳,获得10
7秒前
7秒前
CodeCraft应助无情的悟空采纳,获得10
7秒前
jmsong完成签到,获得积分20
7秒前
7秒前
陨落的繁星发布了新的文献求助150
7秒前
8秒前
斯文飞松应助清辰子丶采纳,获得10
8秒前
迷yo发布了新的文献求助30
8秒前
牛牛完成签到 ,获得积分10
8秒前
以冬发布了新的文献求助10
8秒前
123456完成签到,获得积分10
8秒前
9秒前
lst完成签到,获得积分10
9秒前
zhiou完成签到,获得积分10
9秒前
9秒前
长刀介错人完成签到,获得积分10
10秒前
10秒前
a成完成签到,获得积分10
10秒前
michael发布了新的文献求助10
10秒前
大苏打发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546362
求助须知:如何正确求助?哪些是违规求助? 4632240
关于积分的说明 14625801
捐赠科研通 4573926
什么是DOI,文献DOI怎么找? 2507874
邀请新用户注册赠送积分活动 1484511
关于科研通互助平台的介绍 1455714