Adaptive Traffic Light Control With Deep Reinforcement Learning: An Evaluation of Traffic Flow and Energy Consumption

强化学习 流量(计算机网络) 动力传动系统 能源消耗 计算机科学 自适应控制 燃料效率 交通拥挤 高效能源利用 汽车工程 交通优化 工程类 模拟 浮动车数据 控制(管理) 人工智能 运输工程 扭矩 计算机网络 物理 电气工程 热力学
作者
Lucas Koch,Tobias Brinkmann,Marius Wegener,Kevin Badalian,Jakob Andert
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 15066-15076 被引量:6
标识
DOI:10.1109/tits.2023.3305548
摘要

Cities of all sizes around the world are facing increasing levels of congestion, which leads to increasing travel time and emissions, and ultimately affects the quality of life. Relevant research suggests that adaptive traffic light control systems can improve the traffic flow, but their impact on energy-efficiency of vehicle propulsion systems is not well understood. In this study, we use Proximal Policy Optimization, a Deep Reinforcement Learning algorithm, to develop an optimized adaptive traffic light control systems that controls three traffic lights simultaneously. For this purpose, we have created a microscopic traffic simulation of the city of Aachen, Germany, calibrated on the basis of traffic measurements, where the actual traffic light schedule, a green-wave, fixed-time control scheme, serves as a reference. The traffic simulation is coupled with detailed, physics-based powertrain models of both conventional and electric vehicles, which are validated against chassis dynamometer measurements. By analyzing the complex interactions between traffic light control, the resulting vehicle trajectories and the powertrain components, we show that Reinforcement Learning-based adaptive control can significantly improve the traffic flow, with a 41% increase in average velocity, without any drawbacks in CO2 emission (−1%). Furthermore, we find that maximizing traffic flow and minimizing CO2 emissions are not necessarily contradictory objectives, and identify an increased energy saving potential at low traffic densities. Thus, we prove that adaptive traffic light control can make traffic not only more time-efficient, but also more sustainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2984900855发布了新的文献求助10
刚刚
1秒前
1秒前
年糕发布了新的文献求助10
2秒前
芋泥啵啵发布了新的文献求助10
3秒前
cindy完成签到 ,获得积分10
4秒前
miemie发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
wzyli发布了新的文献求助10
5秒前
5秒前
夜雨林凉发布了新的文献求助10
5秒前
5秒前
siv发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
丘比特应助刘晓倩采纳,获得10
8秒前
猫儿完成签到 ,获得积分10
8秒前
张之静发布了新的文献求助10
10秒前
张大帅6666发布了新的文献求助10
10秒前
医者发布了新的文献求助10
11秒前
11秒前
11秒前
经百招发布了新的文献求助10
11秒前
占儿发布了新的文献求助10
11秒前
李健应助wcli采纳,获得10
11秒前
12秒前
12秒前
开心易真完成签到 ,获得积分10
12秒前
12秒前
14秒前
14秒前
15秒前
15秒前
xiangyuan发布了新的文献求助10
15秒前
cy发布了新的文献求助30
16秒前
今后应助刀杨同学采纳,获得10
17秒前
打打应助LightningFast采纳,获得10
18秒前
花海发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868346
求助须知:如何正确求助?哪些是违规求助? 4159860
关于积分的说明 12899730
捐赠科研通 3914236
什么是DOI,文献DOI怎么找? 2149687
邀请新用户注册赠送积分活动 1168179
关于科研通互助平台的介绍 1070622