仿射变换
编码(社会科学)
运动估计
计算机科学
编码(内存)
人工智能
随机森林
随机存取
仿射形状自适应
块(置换群论)
计算机视觉
块大小
运动(物理)
模式识别(心理学)
算法
数学
仿射组合
统计
几何学
计算机安全
钥匙(锁)
纯数学
操作系统
作者
Fernando Sagrilo,Marta Loose,Ramiro Viana,Gustavo Sanchez,Guilherme Corrêa,Luciano Agostini
标识
DOI:10.1109/iscas46773.2023.10181659
摘要
This paper presents a fast Affine Motion Estimation (AME) of Versatile Video Coding (VVC) Standard, based on Machine Learning and using Random Forest (RF) classification method. This encoding approach develops an RF model for each block size. The models were trained with information extracted during the VVC encoding process of the current, parent, and neighboring Coding Units (CU). Each model is applied to predict whether the Affine Motion Estimation (AME) will be skipped or not for that CU size. The proposed solution achieves a reduction of 20% on average in AME encoding time, with an insignificant impact of 0.07% on BD-BR.
科研通智能强力驱动
Strongly Powered by AbleSci AI