Predicting rectal cancer tumor budding grading based on MRI and CT with multimodal deep transfer learning: A dual-center study

瘤芽 逻辑回归 队列 接收机工作特性 结直肠癌 医学 癌症 机器学习 肿瘤科 人工智能 计算机科学 内科学 转移 淋巴结转移
作者
Ziyan Liu,Genji Bai,Fan Bai,Yuxin Ding,Han Liu,Genji Bai
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (7): e28769-e28769
标识
DOI:10.1016/j.heliyon.2024.e28769
摘要

To investigate the effectiveness of a multimodal deep learning model in predicting tumor budding (TB) grading in rectal cancer (RC) patients.A retrospective analysis was conducted on 355 patients with rectal adenocarcinoma from two different hospitals. Among them, 289 patients from our institution were randomly divided into an internal training cohort (n = 202) and an internal validation cohort (n = 87) in a 7:3 ratio, while an additional 66 patients from another hospital constituted an external validation cohort. Various deep learning models were constructed and compared for their performance using T1CE and CT-enhanced images, and the optimal models were selected for the creation of a multimodal fusion model. Based on single and multiple factor logistic regression, clinical N staging and fecal occult blood were identified as independent risk factors and used to construct the clinical model. A decision-level fusion was employed to integrate these two models to create an ensemble model. The predictive performance of each model was evaluated using the area under the curve (AUC), DeLong's test, calibration curve, and decision curve analysis (DCA). Model visualization Gradient-weighted Class Activation Mapping (Grad-CAM) was performed for model interpretation.The multimodal fusion model demonstrated superior performance compared to single-modal models, with AUC values of 0.869 (95% CI: 0.761-0.976) for the internal validation cohort and 0.848 (95% CI: 0.721-0.975) for the external validation cohort. N-stage and fecal occult blood were identified as clinically independent risk factors through single and multivariable logistic regression analysis. The final ensemble model exhibited the best performance, with AUC values of 0.898 (95% CI: 0.820-0.975) for the internal validation cohort and 0.868 (95% CI: 0.768-0.968) for the external validation cohort.Multimodal deep learning models can effectively and non-invasively provide individualized predictions for TB grading in RC patients, offering valuable guidance for treatment selection and prognosis assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。。。发布了新的文献求助20
2秒前
情怀应助小伙不错采纳,获得20
3秒前
。。。完成签到 ,获得积分10
7秒前
自然的小熊猫完成签到 ,获得积分10
8秒前
8秒前
Spteer完成签到,获得积分10
10秒前
上官若男应助nemo采纳,获得10
10秒前
Lee完成签到,获得积分10
11秒前
11秒前
13秒前
田様应助张某某采纳,获得10
14秒前
怕黑的擎发布了新的文献求助10
16秒前
16秒前
17秒前
李倇仪完成签到,获得积分10
18秒前
小伙不错发布了新的文献求助20
18秒前
谨慎飞丹完成签到 ,获得积分0
20秒前
nemo发布了新的文献求助10
22秒前
儒雅凡桃发布了新的文献求助10
22秒前
23秒前
可靠的冰烟完成签到,获得积分10
27秒前
大白完成签到,获得积分10
27秒前
27秒前
YoungLee完成签到,获得积分10
30秒前
HEIKU应助阿宝采纳,获得10
31秒前
36秒前
37秒前
王二饼完成签到,获得积分20
39秒前
betyby完成签到 ,获得积分10
40秒前
YOLO完成签到 ,获得积分10
40秒前
汉堡包应助一区top采纳,获得10
41秒前
上上签发布了新的文献求助10
42秒前
嘟嘟完成签到,获得积分10
43秒前
忧郁难胜完成签到,获得积分10
44秒前
glay完成签到 ,获得积分10
44秒前
金金金完成签到,获得积分10
45秒前
46秒前
哈哈哈完成签到 ,获得积分10
48秒前
48秒前
Attaa完成签到,获得积分10
49秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843