亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Damage identification of simple supported bridges under moving loads based on variational mode decomposition and deep learning

简单(哲学) 分解 鉴定(生物学) 模式(计算机接口) 结构工程 计算机科学 人工智能 工程类 人机交互 化学 植物 生物 认识论 哲学 有机化学
作者
Chao Wang,Xiang Pan,Tian-Yu Qi,G. Han,Wei‐Xin Ren
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455425500658
摘要

Aiming at rapid and economical damage detection of a large number of simple supported bridges, a new structural damage identification method under moving load based on variational mode decomposition (VMD) and deep learning is proposed. Firstly, a moving vehicle is used as an exciting load to invoke structural damage feature and enhance the signal-to-noise ratio, and the structural vertical acceleration response is extracted by a finite element simulating analysis under various damage cases. In order to simulate the influence of noise and expand the samples, Gaussian white noise is added to the extracted data, and then the response signal is decomposed into a series of intrinsic mode functions (IMFs) using VMD, and the optimal IMF component is selected as the damage sample of the structure. Then, a one-dimensional convolutional neural network (CNN) model is built and trained by the various samples of damage. The vibration response of the practical bridge is processed and inputted by the trained CNN model to identify the location of the damage and degree of the structure. Finally, the effectiveness and anti-noise performance of the proposed method are verified through numerical analysis and a simply supported beam bridge model experiment. The results show that the average identification accuracy of the numerical simulations and experimental is 93.4% and 86.8% with 20% Gaussian white noise, respectively. Sensors at different locations have almost the same identification effect for various cases of damage, so it is possible to identify structural damage only using a small amount of accelerometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kamalika完成签到,获得积分10
1秒前
axin完成签到,获得积分10
2秒前
完美世界应助你好采纳,获得10
4秒前
iDong完成签到 ,获得积分10
6秒前
刘泗青应助axin采纳,获得10
7秒前
xxfsx应助吴博文采纳,获得10
11秒前
李健的粉丝团团长应助零_采纳,获得10
11秒前
yahonyoyoyo发布了新的文献求助10
16秒前
18秒前
GingerF应助科研通管家采纳,获得50
18秒前
GingerF应助科研通管家采纳,获得50
18秒前
浮游应助科研通管家采纳,获得10
18秒前
GingerF应助科研通管家采纳,获得50
18秒前
18秒前
tuanheqi应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
小旭vip完成签到 ,获得积分10
20秒前
成森完成签到,获得积分10
21秒前
你好发布了新的文献求助10
21秒前
魏欣娜完成签到 ,获得积分10
21秒前
Alex应助过儿采纳,获得30
24秒前
Tendency完成签到 ,获得积分10
26秒前
xiyaxia完成签到 ,获得积分10
26秒前
27秒前
31秒前
米歇尔发布了新的文献求助10
37秒前
雨柏完成签到 ,获得积分10
39秒前
Ryan完成签到 ,获得积分10
39秒前
taku完成签到 ,获得积分10
40秒前
yinshan完成签到 ,获得积分10
43秒前
45秒前
自觉语琴完成签到 ,获得积分10
49秒前
eclo完成签到 ,获得积分10
50秒前
米歇尔完成签到,获得积分10
52秒前
52秒前
53秒前
56秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147