亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Phase Contour Enhancement Network for Clothing Parsing

计算机科学 解析 服装 相(物质) 计算机视觉 人工智能 电子工程 工程类 物理 量子力学 历史 考古
作者
Feng Yu,Ying Zhang,Hui-Yin Li,Chenghu Du,Li Liu,Minghua Jiang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 2784-2793 被引量:26
标识
DOI:10.1109/tce.2024.3377377
摘要

Clothing parsing is a challenging task. In this task, there are two main inherent challenges, which are the fine-grained parsing of small clothing components and the missegmentation of similar clothing categories. To address these challenges, this paper proposes a phase contour enhancement network for clothing parsing. It achieves improved accuracy while maintaining a relatively small network complexity. Leveraging the distinctive features of phase maps, we introduce the phase contour enhancement attention (PCEA) module to augment the encoder's object edge information. To further enrich the model's feature extraction capacity, we present the dilated convolution pyramid (DCP) module, combining it with a lightweight decoder to achieve improved global context modeling. The synergistic integration of the PCEA and DCP modules enhances the network with remarkable capabilities in capturing intricate contours, effectively surmounting the challenges of fine-grained parsing for small clothing components and mitigating the missegmentation of similar clothing categories. Through extensive experiments on the CFP, Modanet, and DeepFashion2 datasets and further expansion experiments on the LIP dataset, our method demonstrates outstanding performance across multiple evaluation metrics, surpassing state-of-the-art methods for clothing parsing. In conclusion, our phase contour enhancement network exhibits remarkable performance in both clothing parsing tasks and extended human parsing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
10秒前
24秒前
Akiii_完成签到,获得积分10
33秒前
45秒前
1分钟前
hongxing liu发布了新的文献求助10
1分钟前
小李新人完成签到 ,获得积分10
1分钟前
研友_R2D2发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
hongxing liu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
jianglan发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
3分钟前
breeze发布了新的文献求助30
3分钟前
3分钟前
3分钟前
Funnymudpee发布了新的文献求助10
3分钟前
Funnymudpee完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
Rocky_Qi发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472871
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432553