Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review

计算机科学 人工智能 机器学习 深度学习 自编码 卷积神经网络 发作性 预处理器 脑电图 模式识别(心理学) 医学 精神科
作者
Duong Nhu,Mubeen Janmohamed,Ana Antonic‐Baker,Piero Perucca,Terence J. O’Brien,Amanda Gilligan,Patrick Kwan,Chang Wei Tan,Levin Kuhlmann
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 051002-051002 被引量:15
标识
DOI:10.1088/1741-2552/ac9644
摘要

Abstract Automated interictal epileptiform discharge (IED) detection has been widely studied, with machine learning methods at the forefront in recent years. As computational resources become more accessible, researchers have applied deep learning (DL) to IED detection with promising results. This systematic review aims to provide an overview of the current DL approaches to automated IED detection from scalp electroencephalography (EEG) and establish recommendations for the clinical research community. We conduct a systematic review according to the PRISMA guidelines. We searched for studies published between 2012 and 2022 implementing DL for automating IED detection from scalp EEG in major medical and engineering databases. We highlight trends and formulate recommendations for the research community by analyzing various aspects: data properties, preprocessing methods, DL architectures, evaluation metrics and results, and reproducibility. The search yielded 66 studies, and 23 met our inclusion criteria. There were two main DL networks, convolutional neural networks in 14 studies and long short-term memory networks in three studies. A hybrid approach combining a hidden Markov model with an autoencoder was employed in one study. Graph convolutional network was seen in one study, which considered a montage as a graph. All DL models involved supervised learning. The median number of layers was 9 (IQR: 5–21). The median number of IEDs was 11 631 (IQR: 2663–16 402). Only six studies acquired data from multiple clinical centers. AUC was the most reported metric (median: 0.94; IQR: 0.94–0.96). The application of DL to IED detection is still limited and lacks standardization in data collection, multi-center testing, and reporting of clinically relevant metrics (i.e. F1, AUCPR, and false-positive/minute). However, the performance is promising, suggesting that DL might be a helpful approach. Further testing on multiple datasets from different clinical centers is required to confirm the generalizability of these methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
goblue完成签到,获得积分10
3秒前
4秒前
6秒前
8秒前
Hello应助开朗芸采纳,获得10
9秒前
明哥发布了新的文献求助10
10秒前
柳青青发布了新的文献求助10
11秒前
youngfer发布了新的文献求助10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
15秒前
科目三应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得200
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
雨霁发布了新的文献求助10
15秒前
丘比特应助快乐冰激凌采纳,获得10
17秒前
Ling发布了新的文献求助10
17秒前
18秒前
安内大大发布了新的文献求助10
18秒前
开朗芸完成签到,获得积分10
19秒前
金鱼咕噜噜luu完成签到,获得积分10
19秒前
不知道起啥名字完成签到 ,获得积分10
19秒前
充电宝应助囙氼仚采纳,获得10
19秒前
开朗芸发布了新的文献求助10
22秒前
雨声完成签到,获得积分10
22秒前
CAOHOU应助明哥采纳,获得10
24秒前
Jonathan完成签到,获得积分10
24秒前
24秒前
ccc发布了新的文献求助10
26秒前
美好斓发布了新的文献求助10
28秒前
囙氼仚发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129433
求助须知:如何正确求助?哪些是违规求助? 3666485
关于积分的说明 11599657
捐赠科研通 3365082
什么是DOI,文献DOI怎么找? 1849020
邀请新用户注册赠送积分活动 912857
科研通“疑难数据库(出版商)”最低求助积分说明 828259