Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review

计算机科学 人工智能 机器学习 深度学习 自编码 卷积神经网络 发作性 预处理器 脑电图 模式识别(心理学) 医学 精神科
作者
Duong Nhu,Mubeen Janmohamed,Ana Antonic‐Baker,Piero Perucca,Terence J. O’Brien,Amanda Gilligan,Patrick Kwan,Chang Wei Tan,Levin Kuhlmann
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 051002-051002 被引量:15
标识
DOI:10.1088/1741-2552/ac9644
摘要

Abstract Automated interictal epileptiform discharge (IED) detection has been widely studied, with machine learning methods at the forefront in recent years. As computational resources become more accessible, researchers have applied deep learning (DL) to IED detection with promising results. This systematic review aims to provide an overview of the current DL approaches to automated IED detection from scalp electroencephalography (EEG) and establish recommendations for the clinical research community. We conduct a systematic review according to the PRISMA guidelines. We searched for studies published between 2012 and 2022 implementing DL for automating IED detection from scalp EEG in major medical and engineering databases. We highlight trends and formulate recommendations for the research community by analyzing various aspects: data properties, preprocessing methods, DL architectures, evaluation metrics and results, and reproducibility. The search yielded 66 studies, and 23 met our inclusion criteria. There were two main DL networks, convolutional neural networks in 14 studies and long short-term memory networks in three studies. A hybrid approach combining a hidden Markov model with an autoencoder was employed in one study. Graph convolutional network was seen in one study, which considered a montage as a graph. All DL models involved supervised learning. The median number of layers was 9 (IQR: 5–21). The median number of IEDs was 11 631 (IQR: 2663–16 402). Only six studies acquired data from multiple clinical centers. AUC was the most reported metric (median: 0.94; IQR: 0.94–0.96). The application of DL to IED detection is still limited and lacks standardization in data collection, multi-center testing, and reporting of clinically relevant metrics (i.e. F1, AUCPR, and false-positive/minute). However, the performance is promising, suggesting that DL might be a helpful approach. Further testing on multiple datasets from different clinical centers is required to confirm the generalizability of these methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rose发布了新的文献求助10
1秒前
祺Q发布了新的文献求助10
2秒前
2秒前
2秒前
zhangxiao123发布了新的文献求助10
3秒前
zhx发布了新的文献求助10
3秒前
杨鹏展发布了新的文献求助10
3秒前
xingfangshu完成签到,获得积分10
3秒前
完美世界应助香妃采纳,获得10
4秒前
Sun发布了新的文献求助10
5秒前
无算浮白发布了新的文献求助10
5秒前
NexusExplorer应助denghn采纳,获得10
6秒前
溪氤完成签到 ,获得积分10
6秒前
7秒前
小龙完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助zhangxiao123采纳,获得10
10秒前
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
12秒前
无算浮白完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
farmeryxt应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939