神经调节
计算机科学
贝叶斯优化
控制理论(社会学)
控制器(灌溉)
控制工程
贝叶斯概率
闭环
控制系统
人工智能
工程类
控制(管理)
刺激
神经科学
电气工程
生物
农学
作者
Parisa Sarikhani,Hao-Lun Hsu,Babak Mahmoudi
标识
DOI:10.1109/embc48229.2022.9871006
摘要
Tuning the parameters of controllers to attain the best performance is a challenging task in designing effective closed-loop neuromodulation systems. In this paper, we present a distributed architecture for automated tuning and adaptation of closed-loop neuromodulation control systems. We use this approach for the automated parameter tuning of a Proportional-Integral (PI) neuromodulation controller using Bayesian optimization. We use a biophysically-grounded mean-field model of neural populations under electrical stimulation as a simulation environment for testing and prototyping the proposed framework and characterizing its performance. Our results demonstrate the feasibility of using Bayesian optimization for performance-based automated tuning of a PI controller in closed-loop set-point neuromodulation control tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI