已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CTGAN-ENN: a tabular GAN-based hybrid sampling method for imbalanced and overlapped data in customer churn prediction

计算机科学 采样(信号处理) 计算科学与工程 数据挖掘 人工智能 机器学习 电信 探测器
作者
I Nyoman Mahayasa Adiputra,Paweena Wanchai
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:4
标识
DOI:10.1186/s40537-024-00982-x
摘要

Class imbalance is one of many problems of customer churn datasets. One of the common problems is class overlap, where the data have a similar instance between classes. The prediction task of customer churn becomes more challenging when there is class overlap in the data training. In this research, we suggested a hybrid method based on tabular GANs, called CTGAN-ENN, to address class overlap and imbalanced data in datasets of customers that churn. We used five different customer churn datasets from an open platform. CTGAN is a tabular GAN-based oversampling to address class imbalance but has a class overlap problem. We combined CTGAN with the ENN under-sampling technique to overcome the class overlap. CTGAN-ENN reduced the number of class overlaps by each feature in all datasets. We investigated how effective CTGAN-ENN is in each machine learning technique. Based on our experiments, CTGAN-ENN achieved satisfactory results in KNN, GBM, XGB and LGB machine learning performance for customer churn predictions. We compared CTGAN-ENN with common over-sampling and hybrid sampling methods, and CTGAN-ENN achieved outperform results compared with other sampling methods and algorithm-level methods with cost-sensitive learning in several machine learning algorithms. We provide a time consumption algorithm between CTGAN and CTGAN-ENN. CTGAN-ENN achieved less time consumption than CTGAN. Our research work provides a new framework to handle customer churn prediction problems with several types of imbalanced datasets and can be useful in real-world data from customer churn prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
jdcs发布了新的文献求助10
6秒前
随心所欲关注了科研通微信公众号
6秒前
cch12121发布了新的文献求助30
6秒前
8秒前
龙少在612完成签到,获得积分10
10秒前
wesrety完成签到,获得积分10
13秒前
善学以致用应助王武聪采纳,获得10
15秒前
李健应助苏遇采纳,获得10
15秒前
白露完成签到 ,获得积分10
16秒前
16秒前
18秒前
tiantian完成签到,获得积分20
22秒前
DDDD发布了新的文献求助10
22秒前
吴兰田发布了新的文献求助20
22秒前
漫漫发布了新的文献求助10
23秒前
CodeCraft应助changl2023采纳,获得10
24秒前
爆米花应助聆(*^_^*)采纳,获得10
26秒前
26秒前
28秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
CAOHOU应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
子车茗应助科研通管家采纳,获得20
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
30秒前
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
画船听雨眠完成签到 ,获得积分10
30秒前
31秒前
32秒前
小奎狗发布了新的文献求助10
32秒前
32秒前
彭于晏应助马克采纳,获得10
33秒前
王武聪发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4302817
求助须知:如何正确求助?哪些是违规求助? 3826619
关于积分的说明 11978696
捐赠科研通 3467586
什么是DOI,文献DOI怎么找? 1901860
邀请新用户注册赠送积分活动 949534
科研通“疑难数据库(出版商)”最低求助积分说明 851584