Heterogeneous graph contrastive learning with adaptive data augmentation for semi‐supervised short text classification

计算机科学 人工智能 图形 机器学习 标记数据 模式识别(心理学) 数据挖掘 理论计算机科学
作者
Mingqiang Wu,Zhuoming Xu,Lei Zheng
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13744
摘要

Abstract Short text classification has been widely used in many fields. Due to the scarcity of labelled data, implementing short text classification under semi‐supervised learning setting has become increasingly popular. Semi‐supervised short text classification methods based on graph neural networks can achieve state‐of‐the‐art classification performance by utilizing the expressive power of graph neural networks. However, these methods usually fail to mine the hidden patterns of a large amount of short text node data in the graph to optimize the short text node embeddings, which limits the semantic representation power of the short texts, thus leading to suboptimal classification performance. To overcome the limitation, this paper proposes a novel semi‐supervised short text classification method called the Heterogeneous Graph Contrastive Learning with Adaptive Data Augmentation (HGCLADA). In the knowledge bases guided soft prompt‐based data augmentation component, the related words of the tag words are used to optimize the soft prompts for generating diverse augmented samples. In the heterogeneous graph contrastive learning framework component, a heterogeneous graph that is constructed using short texts and keywords and an effective edge augmentation scheme based on a short text clustering algorithm are proposed. The optimized short text embeddings can be obtained to achieve the effective semi‐supervised short text classification. Extensive experiments on six benchmark datasets show that our HGCLADA method outperforms four classes of state‐of‐the‐art methods in terms of classification accuracy, especially with significant performance improvements of 8.74% on the TagMyNews dataset when each class only contains 20 labelled data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
SciGPT应助科研通管家采纳,获得50
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
uu完成签到,获得积分10
7秒前
kkkk完成签到,获得积分10
11秒前
15秒前
动听文轩发布了新的文献求助10
19秒前
100发布了新的文献求助10
21秒前
丰富雅容完成签到,获得积分10
21秒前
23秒前
28秒前
郭宇发布了新的文献求助10
30秒前
慕青应助阿巴阿巴采纳,获得10
33秒前
Hou完成签到 ,获得积分10
34秒前
bear发布了新的文献求助10
34秒前
wxyinhefeng完成签到 ,获得积分10
35秒前
vvvaee完成签到 ,获得积分10
39秒前
42秒前
www完成签到,获得积分10
44秒前
冷静的莞完成签到 ,获得积分0
48秒前
言非离完成签到,获得积分10
58秒前
bear完成签到,获得积分10
58秒前
frenchfriespie完成签到,获得积分10
59秒前
开心的火龙果完成签到,获得积分10
1分钟前
标致荔枝完成签到,获得积分10
1分钟前
义气谷兰完成签到 ,获得积分10
1分钟前
桐桐完成签到,获得积分0
1分钟前
suiting完成签到,获得积分10
1分钟前
艳子发布了新的文献求助10
1分钟前
研友_VZG7GZ应助lulu采纳,获得10
1分钟前
不倦应助suiting采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872