亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modal and multi-criteria conflict analysis model based on deep learning and dominance-based rough sets: Application to clinical non-parallel decision problems

计算机科学 人工智能 机器学习 数据挖掘 情态动词 相似性(几何) 决策规则 一致性(知识库) 图像(数学) 化学 高分子化学
作者
Xiaoli Chu,Bingzhen Sun,Xiaodong Chu,Lu Wang,Kun Bao,Nanguan Chen
出处
期刊:Information Fusion [Elsevier BV]
卷期号:113: 102636-102636 被引量:9
标识
DOI:10.1016/j.inffus.2024.102636
摘要

The non-parallel disease progression and curative effect are the difficulties of clinical diagnosis and treatment decisions. Experts (doctors) constantly summarize these non-parallel phenomena for more accurate diagnosis and treatment. In order to discover the mechanism of clinical non-parallel decision-making, this paper constructs a multi-modal and multi-criteria conflict analysis method based on deep learning (DL) and dominance-based rough sets (DRSA). First, for multi-modal attribute information, we adopted a deep learning based visual attention distribution to focus on the priority areas of images, a deep residual network is used for a feature extractor. The dominant characteristics of the attributes are considered, and the dominant similarity relationship based on cosine similarity is constructed using DRSA. Second, conditional attributes are used to classify objects and predict clinical progression (outcome). At the same time, the objects are classified according to decision attributes based on DRSA. Third, the Pawlak conflict analysis is introduced to analyze the consistency between the predicted results of conditional attributes and the practical results generated by decision attributes. Finally, four clinically non-parallel decision datasets are used, including colorectal cancer (CRC), membranous nephropathy (MN), rheumatoid arthritis (RA) diagnosis and MN efficacy evaluation, to verify the applicability and validity of the proposed model and discover the non-parallel decision mechanism of different diseases. This paper constructs a data-driven clinical decision research paradigm, and provides a research approach to a wide range of non-parallel decision-making problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z335gZ完成签到,获得积分20
刚刚
5秒前
平常的乘云完成签到,获得积分10
6秒前
11秒前
35秒前
搜集达人应助mengzhe采纳,获得10
45秒前
53秒前
53秒前
56秒前
mengzhe发布了新的文献求助10
57秒前
Yvonnne关注了科研通微信公众号
59秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
mengzhe完成签到,获得积分10
1分钟前
柯语雪完成签到,获得积分10
1分钟前
酷酷的八宝粥完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
牛八先生完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
3分钟前
satsuki发布了新的文献求助10
3分钟前
善学以致用应助satsuki采纳,获得10
3分钟前
3分钟前
3分钟前
梦想在路上完成签到,获得积分10
3分钟前
Hayat发布了新的文献求助30
3分钟前
江山木发布了新的文献求助10
4分钟前
4分钟前
顾矜应助张智采纳,获得10
4分钟前
江山木发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077997
求助须知:如何正确求助?哪些是违规求助? 4296923
关于积分的说明 13387571
捐赠科研通 4119458
什么是DOI,文献DOI怎么找? 2256007
邀请新用户注册赠送积分活动 1260335
关于科研通互助平台的介绍 1193757