Integrating vision‐based AI and large language models for real‐time water pollution surveillance

污染 水污染 污染物 环境科学 计算机科学 生态学 生物
作者
R. Dinesh Jackson Samuel,Yusuf Sermet,David M. Cwiertny,İbrahim Demir
出处
期刊:Water Environment Research [Wiley]
卷期号:96 (8) 被引量:1
标识
DOI:10.1002/wer.11092
摘要

Water pollution has become a major concern in recent years, affecting over 2 billion people worldwide, according to UNESCO. This pollution can occur by either naturally, such as algal blooms, or man-made when toxic substances are released into water bodies like lakes, rivers, springs, and oceans. To address this issue and monitor surface-level water pollution in local water bodies, an informative real-time vision-based surveillance system has been developed in conjunction with large language models (LLMs). This system has an integrated camera connected to a Raspberry Pi for processing input frames and is further linked to LLMs for generating contextual information regarding the type, causes, and impact of pollutants on both human health and the environment. This multi-model setup enables local authorities to monitor water pollution and take necessary steps to mitigate it. To train the vision model, seven major types of pollutants found in water bodies like algal bloom, synthetic foams, dead fishes, oil spills, wooden logs, industrial waste run-offs, and trashes were used for achieving accurate detection. ChatGPT API has been integrated with the model to generate contextual information about pollution detected. Thus, the multi-model system can conduct surveillance over water bodies and autonomously alert local authorities to take immediate action, eliminating the need for human intervention. PRACTITIONER POINTS: Combines cameras and LLMs with Raspberry Pi for processing and generating pollutant information. Uses YOLOv5 to detect algal blooms, synthetic foams, dead fish, oil spills, and industrial waste. Supports various modules and environments, including drones and mobile apps for broad monitoring. Educates on environmental healthand alerts authorities about water pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
MnO2fff应助科研通管家采纳,获得20
刚刚
ijoy应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得30
刚刚
刚刚
simulation完成签到,获得积分10
刚刚
失眠醉易应助科研通管家采纳,获得20
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
哭泣灯泡应助科研通管家采纳,获得10
1秒前
善学以致用应助Sharon采纳,获得10
1秒前
勤劳傲晴发布了新的文献求助10
1秒前
重要尔曼完成签到,获得积分10
2秒前
qq完成签到,获得积分10
2秒前
3秒前
zxt完成签到 ,获得积分10
3秒前
li发布了新的文献求助30
4秒前
4秒前
Akim应助wjr采纳,获得10
5秒前
科目三应助simulation采纳,获得10
5秒前
zhihe完成签到,获得积分10
5秒前
6秒前
欧阳浩楠完成签到,获得积分20
7秒前
tong发布了新的文献求助10
7秒前
7秒前
藏识发布了新的文献求助200
7秒前
li完成签到,获得积分10
9秒前
所所应助ky通通通采纳,获得10
10秒前
yana发布了新的文献求助10
10秒前
11秒前
eyu完成签到,获得积分10
11秒前
wanci应助天想月采纳,获得10
13秒前
Jenkin发布了新的文献求助10
13秒前
zxt关注了科研通微信公众号
16秒前
miss_puff完成签到,获得积分10
17秒前
SYLH应助活泼的觅云采纳,获得10
17秒前
tong完成签到,获得积分10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801824
求助须知:如何正确求助?哪些是违规求助? 3347627
关于积分的说明 10334518
捐赠科研通 3063778
什么是DOI,文献DOI怎么找? 1682083
邀请新用户注册赠送积分活动 807911
科研通“疑难数据库(出版商)”最低求助积分说明 763969