Prostate cancer treatment recommendation study based on machine learning and SHAP interpreter

医学 前列腺切除术 前列腺癌 接收机工作特性 阶段(地层学) 前列腺特异性抗原 肿瘤科 内科学 预测值 前列腺 流行病学 癌症 生物 古生物学
作者
Shengsheng Tang,Hongzheng Zhang,Junhao Liang,Shishi Tang,Li Lin,Yuxuan Li,Yue Xu,Daohu Wang,Yi Zhou
出处
期刊:Cancer Science [Wiley]
卷期号:115 (11): 3755-3766 被引量:4
标识
DOI:10.1111/cas.16327
摘要

Abstract This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with prostate cancer, differentiating between surgical and non‐surgical treatments. The performances of the algorithms were measured using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value. The Shapley Additive Explanations (SHAP) method was employed to investigate the key factors influencing the prediction process. Survival analysis methods were used to compare the survival rates of different treatment options. The CatBoost model yielded the best results (AUC = 0.939, sensitivity = 0.877, accuracy = 0.877). SHAP interpreters revealed that the T stage, cancer stage, age, cores positive percentage, prostate‐specific antigen, and Gleason score were the most critical factors in predicting treatment options. The study found that surgery significantly improved survival rates, with patients undergoing surgery experiencing a 20.36% increase in 10‐year survival rates compared with those receiving non‐surgical treatments. Among surgical options, radical prostatectomy had the highest 10‐year survival rate at 89.2%. This study successfully developed a predictive model to guide treatment decisions for prostate cancer. Moreover, the model enhanced the transparency of the decision‐making process, providing clinicians with a reference for formulating personalized treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaopig发布了新的文献求助10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
圆锥香蕉应助Ziwu采纳,获得20
5秒前
Trust完成签到,获得积分20
5秒前
6秒前
6秒前
乐乐应助111111222333采纳,获得10
8秒前
linkman发布了新的文献求助10
11秒前
核桃应助suan采纳,获得40
13秒前
13秒前
16秒前
16秒前
俊逸红牛发布了新的文献求助10
17秒前
吴五五完成签到,获得积分10
21秒前
21秒前
Rylee发布了新的文献求助10
22秒前
九鹤发布了新的文献求助10
23秒前
24秒前
大模型应助sheep采纳,获得10
26秒前
27秒前
lixin完成签到,获得积分10
29秒前
30秒前
细心妙菡发布了新的文献求助10
30秒前
32秒前
32秒前
冬雪完成签到,获得积分10
33秒前
果汁鱼发布了新的文献求助10
33秒前
Jasper应助Wangyn采纳,获得10
33秒前
失意发布了新的文献求助10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122738
求助须知:如何正确求助?哪些是违规求助? 3660622
关于积分的说明 11587158
捐赠科研通 3361823
什么是DOI,文献DOI怎么找? 1847216
邀请新用户注册赠送积分活动 911727
科研通“疑难数据库(出版商)”最低求助积分说明 827597