MGCMA: Multi-scale Generator with Channel-wise Mask Attention to generate Synthetic Contrast-enhanced Chest Computed Tomography

对比度(视觉) 计算机科学 发电机(电路理论) 人工智能 自编码 模态(人机交互) 医学影像学 计算机断层摄影术 图像质量 生成对抗网络 频道(广播) 计算机视觉 图像(数学) 模式识别(心理学) 放射科 深度学习 医学 功率(物理) 物理 计算机网络 量子力学
作者
Jeongho Kim,Yun‐Gyoo Lee,Dongyoung Ko,Taejune Kim,Soo‐Youn Ham,Simon S. Woo
标识
DOI:10.1145/3555776.3578618
摘要

Medical images, including computed tomography (CT) assist doctors and physicians in diagnosing anatomic structures and various internal pathologies. In CT, intravenous contrast media is often applied, which are chemicals developed to aid in the characterization of pathology by enhancing the capabilities of an imaging modality to differentiate between different biological tissues. Especially, with the use of contrast media, thorough examinations of the patients can be possible. However, contrast media can have severe adverse and side effects such as hypersensitive reaction to generalized seizures. Yet, without contrast media, it is difficult to diagnose patients that have disorders in the internal organs. With the help of DNN models, especially generative adversarial network (GAN), contrast-enhanced CT (CECT) images can be synthetically generated from non-contrast CT (NCCT) images. GANs or autoencoder-based models have been proposed to generate contrast-enhanced CT images; however, the synthesized image does not fully reflect and have crucial spots where contrast has not been synthesized. Thus, in order to enhance the quality of the CECT image, we propose MGCMA, a multi-scale generator with a channel-wise mask attention module for generating synthetic CECT images from NCCT images. Our extensive experiments demonstrate that our model outperforms other baseline models in various metrics such as SSIM and LPIPS. Also, generated images from our approach achieve plausible outcomes from the domain experts' (e.g., physicians and radiologists) evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑壳疼完成签到,获得积分10
2秒前
麻瓜完成签到,获得积分10
6秒前
善学以致用应助天真的青采纳,获得10
6秒前
9秒前
10秒前
12秒前
今后应助1234采纳,获得10
13秒前
小二郎应助LA采纳,获得10
14秒前
14秒前
15秒前
成就的骁发布了新的文献求助10
15秒前
18秒前
19秒前
20秒前
儒雅的小熊猫完成签到,获得积分10
20秒前
hkpwy发布了新的文献求助30
21秒前
Aom完成签到,获得积分10
21秒前
21秒前
Stroeve发布了新的文献求助20
23秒前
liu完成签到,获得积分10
25秒前
25秒前
peekaboo发布了新的文献求助10
26秒前
szh发布了新的文献求助10
26秒前
华仔应助光亮的太阳采纳,获得10
29秒前
张亚慧完成签到 ,获得积分10
30秒前
情怀应助移动马桶采纳,获得10
30秒前
城南她似海完成签到 ,获得积分10
30秒前
32秒前
Cc发布了新的文献求助10
32秒前
34秒前
34秒前
小蘑菇应助少一点丶天分采纳,获得10
34秒前
科研通AI5应助12355采纳,获得10
35秒前
35秒前
LA发布了新的文献求助10
36秒前
情怀应助梁大海采纳,获得10
38秒前
华仔发布了新的文献求助10
38秒前
大模型应助光亮的太阳采纳,获得10
39秒前
灰鸽舞发布了新的文献求助10
39秒前
在水一方应助小东西采纳,获得10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783986
求助须知:如何正确求助?哪些是违规求助? 3329119
关于积分的说明 10240158
捐赠科研通 3044540
什么是DOI,文献DOI怎么找? 1671121
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759192