催化作用
耐久性
纳米颗粒
材料科学
化学工程
氧化物
铜
金属
烧结
冶金
纳米技术
化学
复合材料
有机化学
工程类
作者
Gunjoo Kim,Seung‐Hee Ryu,Hojin Jeong,Yunji Choi,Seungwoo Lee,Joon‐Hwan Choi,Hyunjoo Lee
标识
DOI:10.1002/anie.202306017
摘要
Inducing strong metal-support interaction (SMSI) has been a useful way to control the structure of surface active sites. The SMSI often causes the encapsulation of metal particles with an oxide layer. Herein, an amorphous ceria shell was formed on Cu nanoparticles under a mild gas condition with high activity and durability for surface reaction. Cu-Ce solid solution promoted the transfer of surface oxygen species, which induced the ceria shell formation on Cu nanoparticles. This catalyst was used for CO2 hydrogenation, selectively producing CO with high low-temperature activity and good durability for operation at high temperature. CO2 activation and H2 spillover could occur at low temperatures, enhancing the activity. The shell prevented the sintering, assuring durability. This catalyst was applied to a bench-scale reactor without loss in performance, resulting in high CO productivity in all temperature ranges.
科研通智能强力驱动
Strongly Powered by AbleSci AI