Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation

人工智能 分割 计算机科学 模式识别(心理学) 计算机视觉 特征(语言学) 深度学习 语言学 哲学
作者
Yang Li,Yue Zhang,Jingyu Liu,Kang Wang,Kai Zhang,Gensheng Zhang,Xiaofeng Liao,Guang Yang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (9): 5826-5839 被引量:60
标识
DOI:10.1109/tcyb.2022.3194099
摘要

Clinically, retinal vessel segmentation is a significant step in the diagnosis of fundus diseases. However, recent methods generally neglect the difference of semantic information between deep and shallow features, which fail to capture the global and local characterizations in fundus images simultaneously, resulting in the limited segmentation performance for fine vessels. In this article, a global transformer (GT) and dual local attention (DLA) network via deep-shallow hierarchical feature fusion (GT-DLA-dsHFF) are investigated to solve the above limitations. First, the GT is developed to integrate the global information in the retinal image, which effectively captures the long-distance dependence between pixels, alleviating the discontinuity of blood vessels in the segmentation results. Second, DLA, which is constructed using dilated convolutions with varied dilation rates, unsupervised edge detection, and squeeze-excitation block, is proposed to extract local vessel information, consolidating the edge details in the segmentation result. Finally, a novel deep-shallow hierarchical feature fusion (dsHFF) algorithm is studied to fuse the features in different scales in the deep learning framework, respectively, which can mitigate the attenuation of valid information in the process of feature fusion. We verified the GT-DLA-dsHFF on four typical fundus image datasets. The experimental results demonstrate our GT-DLA-dsHFF achieves superior performance against the current methods and detailed discussions verify the efficacy of the proposed three modules. Segmentation results of diseased images show the robustness of our proposed GT-DLA-dsHFF. Implementation codes will be available on https://github.com/YangLibuaa/GT-DLA-dsHFF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵哒完成签到,获得积分10
刚刚
完美世界应助啊咧采纳,获得10
刚刚
黄毛虎发布了新的文献求助10
1秒前
酷炫甜瓜完成签到,获得积分10
1秒前
2秒前
霍霍完成签到 ,获得积分10
2秒前
梅子黄时雨完成签到,获得积分10
3秒前
中草药完成签到,获得积分10
3秒前
3秒前
略略略完成签到 ,获得积分10
4秒前
a31发布了新的文献求助10
4秒前
4秒前
5秒前
yywa发布了新的文献求助10
5秒前
5秒前
Shine完成签到 ,获得积分10
5秒前
彩色飞柏发布了新的文献求助10
6秒前
清秋完成签到,获得积分10
6秒前
大力哈密瓜完成签到,获得积分10
6秒前
6秒前
HQ完成签到,获得积分10
7秒前
7秒前
路十三完成签到,获得积分10
7秒前
7秒前
科研通AI5应助budingman采纳,获得30
8秒前
深情冬云发布了新的文献求助30
8秒前
8秒前
Oliver发布了新的文献求助10
8秒前
9秒前
元谷雪发布了新的文献求助10
10秒前
randomname完成签到 ,获得积分10
10秒前
wenjing发布了新的文献求助10
10秒前
EvenCai发布了新的文献求助10
10秒前
斯文山菡发布了新的文献求助10
10秒前
善学以致用应助yywa采纳,获得10
11秒前
12秒前
仲冬卉发布了新的文献求助10
12秒前
aniu发布了新的文献求助10
12秒前
正直灵完成签到,获得积分10
13秒前
伶俐雅柏完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853