清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ophthalmological Question Answering and Reasoning Using OpenAI o1 vs Other Large Language Models

公制(单位) 医学 人工智能 自然语言处理 机器学习 计算机科学 运营管理 经济 程序设计语言
作者
Sahana Srinivasan,X. C. Ai,Minjie Zou,Ke Zou,Hyunjae Kim,Thaddaeus Wai Soon Lo,Krithi Pushpanathan,Guang Yang,Jocelyn Hui Lin Goh,Yiming Kong,Anran Li,Maxwell Singer,Kai Jin,Fares Antaki,David Z. Chen,Dianbo Liu,Ron A. Adelman,Qingyu Chen,Yih‐Chung Tham
出处
期刊:JAMA Ophthalmology [American Medical Association]
标识
DOI:10.1001/jamaophthalmol.2025.2413
摘要

Importance OpenAI’s recent large language model (LLM) o1 has dedicated reasoning capabilities, but it remains untested in specialized medical fields like ophthalmology. Evaluating o1 in ophthalmology is crucial to determine whether its general reasoning can meet specialized needs or if domain-specific LLMs are warranted. Objective To assess the performance and reasoning ability of OpenAI’s o1 compared with other LLMs on ophthalmological questions. Design, Setting, and Participants In September through October 2024, the LLMs o1, GPT-4o (OpenAI), GPT-4 (OpenAI), GPT-3.5 (OpenAI), Llama 3-8B (Meta), and Gemini 1.5 Pro (Google) were evaluated on 6990 standardized ophthalmology questions from the Medical Multiple-Choice Question Answering (MedMCQA) dataset. The study did not analyze human participants. Main Outcomes and Measures Models were evaluated on performance (accuracy and macro F1 score) and reasoning abilities (text-generation metrics: Recall-Oriented Understudy for Gisting Evaluation [ROUGE-L], BERTScore, BARTScore, AlignScore, and Metric for Evaluation of Translation With Explicit Ordering [METEOR]). Mean scores are reported for o1, while mean differences (Δ) from o1’s scores are reported for other models. Expert qualitative evaluation of o1 and GPT-4o responses assessed usefulness, organization, and comprehensibility using 5-point Likert scales. Results The LLM o1 achieved the highest accuracy (mean, 0.877; 95% CI, 0.870 to 0.885) and macro F1 score (mean, 0.877; 95% CI, 0.869 to 0.884) ( P < .001). In BERTScore, GPT-4o (Δ = 0.012; 95% CI, 0.012 to 0.013) and GPT-4 (Δ = 0.014; 95% CI, 0.014 to 0.015) outperformed o1 ( P < .001). Similarly, in AlignScore, GPT-4o (Δ = 0.019; 95% CI, 0.016 to 0.021) and GPT-4 (Δ = 0.024; 95% CI, 0.021 to 0.026) again performed better ( P < .001). In ROUGE-L, GPT-4o (Δ = 0.018; 95% CI, 0.017 to 0.019), GPT-4 (Δ = 0.026; 95% CI, 0.025 to 0.027), and GPT-3.5 (Δ = 0.008; 95% CI, 0.007 to 0.009) all outperformed o1 ( P < .001). Conversely, o1 led in BARTScore (mean, –4.787; 95% CI, –4.813 to –4.762; P < .001) and METEOR (mean, 0.221; 95% CI, 0.218 to 0.223; P < .001 except GPT-4o). Also, o1 outperformed GPT-4o in usefulness (o1: mean, 4.81; 95% CI, 4.73 to 4.89; GPT-4o: mean, 4.53; 95% CI, 4.40 to 4.65; P < .001) and organization (o1: mean, 4.83; 95% CI, 4.75 to 4.90; GPT-4o: mean, 4.63; 95% CI, 4.51 to 4.74; P = .003). Conclusions and Relevance This study found that o1 excelled in accuracy but showed inconsistencies in text-generation metrics, trailing GPT-4o and GPT-4; expert reviews found o1’s responses to be more clinically useful and better organized than GPT-4o. While o1 demonstrated promise, its performance in addressing ophthalmology-specific challenges is not fully optimal, underscoring the potential need for domain-specialized LLMs and targeted evaluations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观忆之完成签到,获得积分10
3秒前
poki完成签到 ,获得积分10
17秒前
19秒前
41秒前
46秒前
大医仁心完成签到 ,获得积分10
1分钟前
大模型应助gszy1975采纳,获得10
1分钟前
Lucas应助小白采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小白发布了新的文献求助10
1分钟前
白天亮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ryan1300完成签到 ,获得积分10
2分钟前
ktw完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
习月阳完成签到,获得积分10
3分钟前
3分钟前
科研野狗完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
wuju完成签到,获得积分10
4分钟前
bo完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
可爱的函函应助自由沧海采纳,获得10
5分钟前
Ashao完成签到 ,获得积分10
5分钟前
Manzia完成签到,获得积分10
5分钟前
米奇妙妙屋完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
sissiarno完成签到,获得积分0
6分钟前
6分钟前
6分钟前
踏实谷蓝完成签到 ,获得积分10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4143176
求助须知:如何正确求助?哪些是违规求助? 3679356
关于积分的说明 11627857
捐赠科研通 3372644
什么是DOI,文献DOI怎么找? 1852447
邀请新用户注册赠送积分活动 915187
科研通“疑难数据库(出版商)”最低求助积分说明 829702