亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PGRC: an explainable recommendation method enhanced by knowledge graph and reinforcement learning

作者
Xiaoming Zhang,Jiameng Zhang,Huiyong Wang
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:59 (4-5): 670-695
标识
DOI:10.1108/dta-05-2024-0556
摘要

Purpose Path information in knowledge graphs can provide explicit explanations for recommendation decisions, thus becoming a focus in explainable recommendation research. However, limited studies about explainable recommendation problems result in low model transparency and poor persuasiveness, affecting user experience. Therefore, the goal is to provide accurate and interpretable recommendations for recommendations. Design/methodology/approach This study proposes a recommendation reasoning method based on knowledge graph and reinforcement learning. To alleviate the noise problem in the state space, a multi-head attention mechanism is used to learn state expressions. A dual critic network is used to optimize long-term and short-term rewards simultaneously, achieving path reasoning in the knowledge graph to provide short-term and long-term value explanations for recommendation decisions. Findings We conduct extensive experiments on the real-world benchmark dataset and the domain dataset to validate the effectiveness of our method on the recommendation and explanation tasks, which proves the method's ability to generate high-quality and interpretable course recommendations. Originality/value Developing explainable recommendation methods based on the combination of knowledge graph and reinforcement learning is crucial to overcome the current limitations. A recommendation system that integrates knowledge reasoning, autonomous learning and interpretability may meet the needs of the modern education field for explainable recommendation systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
ALpha发布了新的文献求助10
15秒前
19秒前
真实的瑾瑜完成签到 ,获得积分10
20秒前
23秒前
ALpha完成签到,获得积分10
33秒前
39秒前
科研小白菜完成签到,获得积分10
40秒前
GL发布了新的文献求助10
43秒前
46秒前
49秒前
聪明怜阳发布了新的文献求助10
51秒前
orixero应助GL采纳,获得30
54秒前
blenx完成签到,获得积分10
1分钟前
1分钟前
ZBQ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
ying818k发布了新的文献求助10
1分钟前
1分钟前
lulu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
lulu发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
lulu发布了新的文献求助10
2分钟前
zzxx完成签到,获得积分10
2分钟前
lulu发布了新的文献求助10
2分钟前
ljx完成签到 ,获得积分10
2分钟前
yipmyonphu应助lulu采纳,获得10
3分钟前
yipmyonphu应助lulu采纳,获得10
3分钟前
yipmyonphu应助lulu采纳,获得10
3分钟前
科研通AI6应助lulu采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
jkj发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442