Exploration on Bubble Entropy

气泡 计算机科学 熵(时间箭头) 统计物理学 物理 热力学 并行计算
作者
George Manis,Dimitrios Platakis,Roberto Sassi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-10
标识
DOI:10.1109/jbhi.2025.3593153
摘要

Bubble entropy is a recently proposed entropy metric. Having certain advantages over popular definitions, bubble entropy finds its place in the research community map. It belongs to the family of entropy estimators which embed the signal into an m-dimensional space. Two are the main drawbacks for which those methods are criticized: the high computational cost and the dependence on parameters. Bubble entropy can be an answer to both, since computation can be performed in linear time and the dependence on parameters can be considered minimal in many practical situations. Popular entropy definitions, which are built over an embedding of the signal, mainly rely on two parameters: the size of the embedding space m and a tolerance r, which set a threshold over the distance between two points in the m-dimensional space to be considered similar. Bubble entropy totally eliminates the necessity to define a threshold distance, while it largely decouples the entropy estimation from the selection of the actual size of the embedding space in stationary conditions. Bubble entropy is compared to popular entropy definitions on theoretical and experimental basis. Theoretical analyses reveal significant advantages. Experimental analyses, comparing congestive heart failure patients and controls subjects, show that bubble entropy outperforms other popular, well established, entropy estimators in discriminating those two groups. Furthermore, machine learning-based feature ranking and experiments show that bubble entropy serves as a valuable source of features for AI decision-support algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森诺发布了新的文献求助10
刚刚
桐桐应助默默善愁采纳,获得10
刚刚
ll完成签到,获得积分10
1秒前
oboul发布了新的文献求助10
2秒前
啦啦啦发布了新的文献求助10
3秒前
3秒前
脑洞疼应助吉普赛大青蛙采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
kyo驳回了丘比特应助
8秒前
科研式发布了新的文献求助10
11秒前
11秒前
RA发布了新的文献求助80
11秒前
123发布了新的文献求助10
13秒前
SciGPT应助oboul采纳,获得10
13秒前
科研通AI6应助是我采纳,获得10
14秒前
15秒前
15秒前
JamesPei应助山谷采纳,获得10
15秒前
周健完成签到,获得积分10
16秒前
16秒前
葡萄成熟时完成签到 ,获得积分10
17秒前
细小发布了新的文献求助10
17秒前
19秒前
Ava应助周涨杰采纳,获得10
19秒前
cL完成签到 ,获得积分10
19秒前
syalonyui发布了新的文献求助10
20秒前
小蘑菇应助深藏blue采纳,获得10
21秒前
爆米花应助壮观人达采纳,获得10
23秒前
syalonyui完成签到,获得积分10
24秒前
烂漫的访天完成签到,获得积分10
24秒前
26秒前
27秒前
Eli完成签到 ,获得积分10
27秒前
Akim应助王津丹采纳,获得10
27秒前
小歪完成签到,获得积分10
27秒前
bubble完成签到 ,获得积分10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343