Optically Controlled Memristor Enabling Synergistic Sensing‐Memory‐Computing for Neuromorphic Vision Systems

神经形态工程学 材料科学 记忆电阻器 电阻随机存取存储器 计算机科学 信号(编程语言) 光电子学 人工智能 人工神经网络 电子工程 电压 电气工程 工程类 程序设计语言
作者
Jianhui Zhao,Dingxin Liu,Kangbo Zhao,Jianning Wang,Yufei Shang,Fengyuan Wang,Shuang Ma,Yifei Pei,Lou Jian-Zhong,Xiaobing Yan
出处
期刊:Advanced Materials [Wiley]
卷期号:: e11411-e11411
标识
DOI:10.1002/adma.202511411
摘要

Abstract Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro‐inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo‐response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems. Here, a novel optically controlled memristor is developed by leveraging the unique properties of KNbO 3 , where resistive switching originates from the dynamic reconstruction of conductive filaments controlled by light‐modulated oxygen vacancy charges. Experimental results reveal exceptional reconfigurable electrical characteristics across the 405–650 nm visible spectrum: optically triggered nonvolatile resistive switching, dual‐modal dark‐state operation, switching ratio >10 2 , endurance 6 × 10 6 cycles, retention >10 4 s, photo‐to‐dark current ratio >10 2 , and self‐powered capability. The enhanced light/dark resistance contrast significantly improves visual perception in complex illumination environments, whereas the synergistic interplay between the dynamic photo‐response and nonvolatile storage balances transient signal processing with persistent information retention. In integrated sensing‐memory‐computing tasks, the devices achieved recognition accuracies of 96% and 85% on the standard Jellyfish dataset and its low‐illumination variant, demonstrating technical feasibility and providing a theoretically grounded solution with practical implications for the development of bioinspired vision chips.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助CyS采纳,获得10
刚刚
李爱国应助CyS采纳,获得10
1秒前
hwyk发布了新的文献求助10
1秒前
xiaomuaixuexi完成签到,获得积分10
3秒前
3秒前
Function完成签到,获得积分10
3秒前
小J完成签到 ,获得积分10
3秒前
向日葵完成签到,获得积分10
4秒前
6秒前
Function发布了新的文献求助10
8秒前
科研通AI6应助森林采纳,获得10
8秒前
希望天下0贩的0应助linmo采纳,获得10
9秒前
张茜完成签到,获得积分10
9秒前
机智无春完成签到,获得积分10
9秒前
酷波er应助松下落叶采纳,获得10
9秒前
李爱国应助李白采纳,获得10
10秒前
淡淡土豆应助Ray采纳,获得20
10秒前
在水一方应助知世耶采纳,获得10
11秒前
Zengyuan发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
SciGPT应助Garfield采纳,获得10
13秒前
诚心世开完成签到,获得积分20
14秒前
XWF完成签到,获得积分10
14秒前
15秒前
strive发布了新的文献求助10
16秒前
科目三应助苗苗采纳,获得10
16秒前
解雨洁发布了新的文献求助10
17秒前
Gtpangda完成签到 ,获得积分10
18秒前
20秒前
20秒前
万能图书馆应助韵诗采纳,获得30
21秒前
21秒前
23秒前
森林给森林的求助进行了留言
23秒前
vivi发布了新的文献求助10
24秒前
25秒前
CyS完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533210
求助须知:如何正确求助?哪些是违规求助? 4621604
关于积分的说明 14579314
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499451
邀请新用户注册赠送积分活动 1479304
关于科研通互助平台的介绍 1450504