A comprehensive review of lithium-ion battery remaining useful life prediction: methodologies, datasets, performance metrics, and future perspectives

计算机科学 电池(电) 可靠性工程 锂(药物) 锂离子电池 工程类 物理 心理学 功率(物理) 热力学 精神科
作者
Wenbo Xu,Runze Mao,Peihua Han,Ning Yuan,Y. G. Li,Yuting Guo,Houxiang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (8): 082001-082001 被引量:1
标识
DOI:10.1088/1361-6501/adfb97
摘要

Abstract Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries (LIBs) is crucial for enhancing the safety, reliability, and efficiency of battery-powered applications like electric vehicles and energy storage systems. This review analyzed over 200 peer-reviewed studies and categorized RUL prediction methods into three major approaches: physics-based, data-driven, and hybrid models. Hybrid models, which combine physical insights with data-driven methods, are the most widely used due to their adaptability, accuracy, and interpretability. Data-driven models, such as long short-term memory and convolutional neural networks, excel in capturing complex, nonlinear relationships but require large datasets and high computational power. While physics-based models offer high accuracy, they are less commonly employed due to their complexity and extensive parameter tuning requirements. Despite their benefits, hybrid models face challenges, including increased computational complexity and integration difficulties. This review also highlights key datasets and evaluation metrics used in LIB RUL prediction. The NASA dataset is the most frequently used, appearing in 30.8% of the papers, followed by the CALCE dataset. Root mean square error is the most common evaluation metric, used in 29.6% of the studies, followed by mean absolute error and mean absolute percentage error, which are essential for assessing prediction accuracy. Through comparative analysis, this review identified key challenges and outlined future research directions, including the need for lightweight hybrid models, standardized benchmarking datasets, and uncertainty-aware evaluation frameworks to support real-time, robust battery management systems. In conclusion, the future of LIB RUL prediction lies in the integration of advanced hybrid models, improved datasets, and uncertainty-aware performance metrics, with a focus on refining data-driven approaches for handling real-time, multi-sensor data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rose发布了新的文献求助10
1秒前
祺Q发布了新的文献求助10
2秒前
2秒前
2秒前
zhangxiao123发布了新的文献求助10
3秒前
zhx发布了新的文献求助10
3秒前
杨鹏展发布了新的文献求助10
3秒前
xingfangshu完成签到,获得积分10
3秒前
完美世界应助香妃采纳,获得10
4秒前
Sun发布了新的文献求助10
5秒前
无算浮白发布了新的文献求助10
5秒前
NexusExplorer应助denghn采纳,获得10
6秒前
溪氤完成签到 ,获得积分10
6秒前
7秒前
小龙完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助zhangxiao123采纳,获得10
10秒前
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
12秒前
无算浮白完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
farmeryxt应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939