亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HCCL: H ierarchical C ounterfactual C ontrastive L earning for Robust Visual Question Answering

B组 医学 内科学
作者
Dongze Hao,Qunbo Wang,Xinxin Zhu,Jing Liu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (10): 1-21 被引量:1
标识
DOI:10.1145/3673902
摘要

Despite most state-of-the-art models having achieved amazing performance in Visual Question Answering (VQA) , they usually utilize biases to answer the question. Recently, some studies synthesize counterfactual training samples to help the model to mitigate the biases. However, these synthetic samples need extra annotations and often contain noises. Moreover, these methods simply add synthetic samples to the training data to train the model with the cross-entropy loss, which cannot make the best use of synthetic samples to mitigate the biases. In this article, to mitigate the biases in VQA more effectively, we propose a Hierarchical Counterfactual Contrastive Learning (HCCL) method. Firstly, to avoid introducing noises and extra annotations, our method automatically masks the unimportant features in original pairs to obtain positive samples and create mismatched question-image pairs as negative samples. Then our method uses feature-level and answer-level contrastive learning to make the original sample close to positive samples in the feature space, while away from negative samples in both feature and answer spaces. In this way, the VQA model can learn the robust multimodal features and focus on both visual and language information to produce the answer. Our HCCL method can be adopted in different baselines, and the experimental results on VQA v2, VQA-CP, and GQA-OOD datasets show that our method is effective in mitigating the biases in VQA, which improves the robustness of the VQA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百里一江完成签到 ,获得积分10
12秒前
18秒前
SCINEXUS应助lezbj99采纳,获得50
20秒前
jami-yu发布了新的文献求助30
24秒前
25秒前
26秒前
Ronnie完成签到 ,获得积分10
29秒前
石石夏发布了新的文献求助10
32秒前
lezbj99完成签到,获得积分10
43秒前
拟南芥好壮完成签到,获得积分20
48秒前
ZDM6094完成签到 ,获得积分10
52秒前
jami-yu完成签到,获得积分20
56秒前
Sunny完成签到,获得积分10
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
RFlord发布了新的文献求助10
1分钟前
1分钟前
1分钟前
LeezZZZ发布了新的文献求助10
1分钟前
2分钟前
cds发布了新的文献求助10
2分钟前
在水一方应助cds采纳,获得10
2分钟前
ropuuu完成签到,获得积分10
2分钟前
上官若男应助LeezZZZ采纳,获得10
2分钟前
2分钟前
动听冰淇淋完成签到,获得积分10
2分钟前
2分钟前
cxwcn发布了新的文献求助10
2分钟前
3分钟前
LeezZZZ发布了新的文献求助10
3分钟前
科研通AI5应助ali采纳,获得10
3分钟前
Yini完成签到,获得积分10
3分钟前
Lucas应助cxwcn采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
3分钟前
story发布了新的文献求助10
3分钟前
华仔应助story采纳,获得10
4分钟前
ding应助鸡蛋黄采纳,获得10
4分钟前
科研通AI6应助金钰贝儿采纳,获得10
4分钟前
危机的慕卉完成签到 ,获得积分10
4分钟前
万能图书馆应助bacteria采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568340
求助须知:如何正确求助?哪些是违规求助? 3991003
关于积分的说明 12355277
捐赠科研通 3662958
什么是DOI,文献DOI怎么找? 2018542
邀请新用户注册赠送积分活动 1052981
科研通“疑难数据库(出版商)”最低求助积分说明 940553