Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier BV]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助晓宇采纳,获得10
6秒前
都是发布了新的文献求助10
6秒前
QIN完成签到,获得积分10
8秒前
李念给李念的求助进行了留言
15秒前
15秒前
18秒前
陌路发布了新的文献求助10
19秒前
HJJHJH发布了新的文献求助20
21秒前
领导范儿应助小高同学采纳,获得10
21秒前
思源应助认真的汉堡采纳,获得10
23秒前
情怀应助晓宇采纳,获得10
23秒前
PTDRA发布了新的文献求助10
25秒前
科研通AI2S应助HJJHJH采纳,获得10
26秒前
ChrisKim完成签到,获得积分10
27秒前
34秒前
清爽的柚子完成签到 ,获得积分10
40秒前
cdercder发布了新的文献求助10
41秒前
47秒前
hunbaekkkkk完成签到 ,获得积分10
47秒前
50秒前
yan完成签到,获得积分10
50秒前
51秒前
Liuu完成签到,获得积分10
52秒前
52秒前
yan发布了新的文献求助10
54秒前
kukudou2发布了新的文献求助10
55秒前
57秒前
尘默发布了新的文献求助10
58秒前
58秒前
CX完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
李广辉发布了新的文献求助10
1分钟前
风中的元灵完成签到,获得积分10
1分钟前
wss123456发布了新的文献求助10
1分钟前
wss123456完成签到,获得积分20
1分钟前
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
pluto应助科研通管家采纳,获得50
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385