Rough neural network based data-driven model-free adaptive fault-tolerant control for discrete-time nonlinear systems

计算机科学 非线性系统 人工神经网络 容错 离散时间和连续时间 控制理论(社会学) 自适应控制 控制(管理) 人工智能 分布式计算 统计 物理 数学 量子力学
作者
S. Isapour,Mahsan Tavakoli‐Kakhki
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:134: 108651-108651 被引量:2
标识
DOI:10.1016/j.engappai.2024.108651
摘要

This paper presents a data-driven Fault-Tolerant Control (FTC) system based on Model-Free Adaptive Control (MFAC) for a class of nonlinear discrete-time systems. First, the original system is converted in to a Compact Form Dynamic Linearization (CFDL) data model using the Pseudo-Partial-Derivative (PPD) technique. Second, a Rough Neural Network (RNN) is employed as an observer for Fault Detection (FD) by generating residual. Moreover, the obtained residual is incorporated into the CFDL and the optimality criterion to reconstruct the FTC strategy. The key contributions of this research include: 1) Considering and compensating the sensor and actuator faults simultaneously, which improves the overall system's robustness.; 2) the use of RNN as a powerful predictor for noisy and uncertain industrial data for FD, thereby enhancing the accuracy of FD; 3) the direct embedding of the generated residual from RNN into the controller without the need to estimate the fault function, simplifying the control process and 4) the research relies on input and output data from the controlled system for FD and FTC processes, which reduces the computational burden and increases efficiency. Finally, the simulation results show the effectiveness of the proposed data-driven FTC approach in comparision with the existing data-driven FTC approaches in fault control of some sample systems including high-speed train and CSTR system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的电源完成签到 ,获得积分10
2秒前
康康XY完成签到 ,获得积分10
3秒前
研友_pLwBm8发布了新的文献求助10
3秒前
桐桐应助小西米采纳,获得10
3秒前
贪玩绿草完成签到 ,获得积分10
3秒前
天天向上发布了新的文献求助10
3秒前
科研通AI5应助WQY采纳,获得10
5秒前
明理问柳完成签到,获得积分10
6秒前
7秒前
晓生完成签到,获得积分10
7秒前
9秒前
holland完成签到 ,获得积分10
9秒前
淡定的蛋挞完成签到,获得积分10
11秒前
14秒前
Arya发布了新的文献求助10
14秒前
bubu完成签到,获得积分10
16秒前
17秒前
脑洞疼应助su采纳,获得10
18秒前
落寞臻发布了新的文献求助10
19秒前
19秒前
22秒前
嘟嘟完成签到,获得积分10
23秒前
科研小白发布了新的文献求助10
23秒前
23秒前
啊啊啊哦哦哦完成签到,获得积分10
24秒前
24秒前
25秒前
故酒应助Qyyy采纳,获得10
26秒前
Lucas应助二手的科学家采纳,获得10
27秒前
tiantian8715发布了新的文献求助10
27秒前
科研通AI5应助某某采纳,获得10
27秒前
su完成签到,获得积分20
28秒前
28秒前
dmr发布了新的文献求助30
29秒前
珈蓝完成签到,获得积分10
30秒前
研友_pLwBm8完成签到,获得积分10
30秒前
隐形曼青应助宇宙的琴弦采纳,获得10
30秒前
zho发布了新的文献求助10
30秒前
30秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777