Tailoring Stress–Strain Curves of Flexible Snapping Mechanical Metamaterial for On‐Demand Mechanical Responses via Data‐Driven Inverse Design

材料科学 反向 超材料 复合材料 拉伤 机械设计 应力-应变曲线 压力(语言学) 机械工程 变形(气象学) 光电子学 几何学 内科学 工程类 哲学 医学 语言学 数学
作者
Zhiping Chai,Zisheng Zong,Haochen Yong,Xingxing Ke,Jiaqi Zhu,Han Ding,Chuan Fei Guo,Zhigang Wu
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (33) 被引量:18
标识
DOI:10.1002/adma.202404369
摘要

By incorporating soft materials into the architecture, flexible mechanical metamaterials enable promising applications, e.g., energy modulation, and shape morphing, with a well-controllable mechanical response, but suffer from spatial and temporal programmability towards higher-level mechanical intelligence. One feasible solution is to introduce snapping structures and then tune their responses by accurately tailoring the stress-strain curves. However, owing to the strongly coupled nonlinearity of structural deformation and material constitutive model, it is difficult to deduce their stress-strain curves using conventional ways. Here, a machine learning pipeline is trained with the finite element analysis data that considers those strongly coupled nonlinearities to accurately tailor the stress-strain curves of snapping metamaterialfor on-demand mechanical response with an accuracy of 97.41%, conforming well to experiment. Utilizing the established approach, the energy absorption efficiency of the snapping-metamaterial-based device can be tuned within the accessible range to realize different rebound heights of a falling ball, and soft actuators can be spatially and temporally programmed to achieve synchronous and sequential actuation with a single energy input. Purely relying on structure designs, the accurately tailored metamaterials increase the devices' tunability/programmability. Such an approach can potentially extend to similar nonlinear scenarios towards predictable or intelligent mechanical responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助亲爱的融采纳,获得30
2秒前
脑洞疼应助Richard采纳,获得10
2秒前
博弈春秋发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
malenia发布了新的文献求助10
6秒前
星晴遇见花海完成签到 ,获得积分10
6秒前
6秒前
乐乐应助Summer采纳,获得10
8秒前
8秒前
小橘子完成签到,获得积分10
8秒前
9秒前
9秒前
xiaozhang发布了新的文献求助10
9秒前
10秒前
陈皮完成签到,获得积分10
10秒前
Bamboo完成签到,获得积分10
10秒前
11秒前
11秒前
Banbor2021发布了新的文献求助20
14秒前
14秒前
博修发布了新的文献求助10
15秒前
怡轻肝完成签到,获得积分10
15秒前
A溶大美噶发布了新的文献求助10
16秒前
xzh发布了新的文献求助10
16秒前
研究僧发布了新的文献求助10
16秒前
Akim应助文献来来来采纳,获得10
17秒前
17秒前
18秒前
菠萝发布了新的文献求助10
20秒前
NexusExplorer应助迅速冥茗采纳,获得10
20秒前
脑洞疼应助xiha西希采纳,获得10
21秒前
22秒前
科研通AI2S应助怡轻肝采纳,获得30
23秒前
24秒前
26秒前
orixero应助亦承梦采纳,获得10
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906101
求助须知:如何正确求助?哪些是违规求助? 3451681
关于积分的说明 10865958
捐赠科研通 3176999
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791207