地质学
纳米
比例(比率)
分辨率(逻辑)
矿物学
高分辨率
地球化学
遥感
复合材料
材料科学
地图学
人工智能
计算机科学
地理
作者
Mark E. Curtis,Carl Sondergeld,Raymond Ambrose,Chandra Rai
出处
期刊:AAPG Bulletin
[American Association of Petroleum Geologists]
日期:2012-04-01
卷期号:96 (4): 665-677
被引量:659
摘要
The microstructure of gas shale samples from nine different formations has been investigated using a combination of focused ion beam (FIB) milling and scanning electron microscopy (SEM). Backscattered electron (BSE) images of FIB cross sectioned shale surfaces show a complex microstructure with variations observed among the formations. Energy dispersive spectroscopy of the shale cross sections indicates that clay, carbonate, quartz, pyrite, and kerogen are the most prevalent components. In the BSE images, areas of kerogen are observed interspersed with the inorganic grains. Pores are observed in both the kerogen and inorganic matrix with the size, shape, and number of pores varying among the shale samples. By using FIB milling and SEM imaging sequentially and repetitively, three-dimensional (3-D) data sets of SEM images have been generated for each of the shale samples. Three-dimensional volumes of the shales are reconstructed from these images. By setting thresholds on the gray scale, the kerogen and pore networks are segmented out and visualized in the reconstructed shale volumes. Estimates of kerogen and pore volume percentages of the reconstructed shale volumes have been made and range from 0 to 90.0% for the kerogen and 0.2 to 2.3% for pores. Estimates of pore-size distributions suggest that although pores with radii of approximately 3 nm dominate in number, they do not necessarily dominate in total volumetric contribution. Scanning electron microscopy images and 3-D reconstructions reinforce the facts that shales are quite different and that their microstructures are highly variable and complex.
科研通智能强力驱动
Strongly Powered by AbleSci AI