Domain Adaptation Techniques for EEG-Based Emotion Recognition: A Comparative Study on Two Public Datasets

计算机科学 域适应 脑电图 学习迁移 脑-机接口 适应(眼睛) 机器学习 人工智能 模式识别(心理学) 随机森林 心理学 分类器(UML) 精神科 光学 物理
作者
Zirui Lan,Olga Sourina,Lipo Wang,Reinhold Scherer,Gernot Müller-Putz
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 85-94 被引量:293
标识
DOI:10.1109/tcds.2018.2826840
摘要

Affective brain-computer interface (aBCI) introduces personal affective factors to human-computer interaction. The state-of-the-art aBCI tailors its classifier to each individual user to achieve accurate emotion classification. A subject-independent classifier that is trained on pooled data from multiple subjects generally leads to inferior accuracy, due to the fact that electroencephalography patterns vary from subject to subject. Transfer learning or domain adaptation techniques have been leveraged to tackle this problem. Existing studies have reported successful applications of domain adaptation techniques on SEED dataset. However, little is known about the effectiveness of the domain adaptation techniques on other affective datasets or in a cross-dataset application. In this paper, we focus on a comparative study on several state-of-the-art domain adaptation techniques on two datasets: 1) DEAP and 2) SEED. We demonstrate that domain adaptation techniques can improve the classification accuracy on both datasets, but not so effective on DEAP as on SEED. Then, we explore the efficacy of domain adaptation in a cross-dataset setting when the data are collected under different environments using different devices and experimental protocols. Here, we propose to apply domain adaptation to reduce the intersubject variance as well as technical discrepancies between datasets, and then train a subject-independent classifier on one dataset and test on the other. Experiment results show that using domain adaptation technique in a transductive adaptation setting can improve the accuracy significantly by 7.25%-13.40% compared to the baseline accuracy where no domain adaptation technique is used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
curtainai完成签到,获得积分10
刚刚
在水一方应助Zirong采纳,获得10
1秒前
1秒前
happy发布了新的文献求助10
1秒前
chenlc完成签到,获得积分20
2秒前
roclie完成签到,获得积分10
3秒前
完美世界应助cyt9999采纳,获得10
4秒前
5秒前
结实星星应助月亮采纳,获得20
6秒前
玩是罪恶的完成签到,获得积分10
7秒前
Zoe完成签到,获得积分10
7秒前
7秒前
格非完成签到,获得积分10
9秒前
8R60d8应助学无止境zx采纳,获得10
10秒前
青衣北风发布了新的文献求助10
10秒前
10秒前
JIE发布了新的文献求助10
10秒前
骑着火车撵火箭完成签到,获得积分10
12秒前
13秒前
Yyy完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
王子完成签到,获得积分10
16秒前
山鬼谣不会枯死的花完成签到,获得积分10
17秒前
fengxiaochao发布了新的文献求助10
17秒前
崔梦楠完成签到 ,获得积分10
17秒前
淡淡夕阳完成签到,获得积分10
18秒前
科研通AI2S应助时尚的雪一采纳,获得10
18秒前
学术大亨发布了新的文献求助10
19秒前
19秒前
南雨完成签到 ,获得积分10
21秒前
hough发布了新的文献求助10
21秒前
lala完成签到,获得积分10
21秒前
Huang完成签到 ,获得积分0
21秒前
22秒前
22秒前
华仔应助hoshiran采纳,获得10
22秒前
22秒前
科研通AI2S应助JIE采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966045
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157819
捐赠科研通 3245924
什么是DOI,文献DOI怎么找? 1793233
邀请新用户注册赠送积分活动 874278
科研通“疑难数据库(出版商)”最低求助积分说明 804304