兰萨克
点云
计算机科学
人工智能
计算机视觉
对象(语法)
过程(计算)
目标检测
约束(计算机辅助设计)
激光雷达
差异(会计)
点(几何)
任务(项目管理)
云计算
迭代和增量开发
图像(数学)
模式识别(心理学)
数学
地理
遥感
工程类
会计
软件工程
业务
操作系统
系统工程
几何学
摘要
Object detection is a fundamental task in computer vision. As the 3D scanning techniques become popular, directly detecting objects through 3D point cloud of a scene becomes an immediate need. We propose an object detection framework combining learning-Based classification, local descriptor, a new variance of RANSAC imposing rigid-body constraint and an iterative process for multi-object detection in continuous point clouds. The framework not only takes global and local information into account, but also benefits from both learning and empirical methods. The experiments performed on the challenging ground Lidar dataset show the effectiveness of our method.
科研通智能强力驱动
Strongly Powered by AbleSci AI