遗传关联
全基因组关联研究
生物
聚类分析
差异(会计)
软件
计算生物学
线性模型
人口
计算机科学
航程(航空)
样本量测定
数据挖掘
单核苷酸多态性
广义线性混合模型
机器学习
统计
数学
遗传学
材料科学
人口学
会计
社会学
基因
基因型
业务
复合材料
程序设计语言
作者
Zhiwu Zhang,Elhan S. Ersoz,Chao‐Qiang Lai,Rory J. Todhunter,Hemant K. Tiwari,Michael A. Gore,Peter J. Bradbury,Jianming Yu,Donna K. Arnett,José M. Ordovás,Edward S. Buckler
出处
期刊:Nature Genetics
[Nature Portfolio]
日期:2010-03-07
卷期号:42 (4): 355-360
被引量:1929
摘要
Mixed linear model (MLM) methods have proven useful in controlling for population structure and relatedness within genome-wide association studies. However, MLM-based methods can be computationally challenging for large datasets. We report a compression approach, called 'compressed MLM', that decreases the effective sample size of such datasets by clustering individuals into groups. We also present a complementary approach, 'population parameters previously determined' (P3D), that eliminates the need to re-compute variance components. We applied these two methods both independently and combined in selected genetic association datasets from human, dog and maize. The joint implementation of these two methods markedly reduced computing time and either maintained or improved statistical power. We used simulations to demonstrate the usefulness in controlling for substructure in genetic association datasets for a range of species and genetic architectures. We have made these methods available within an implementation of the software program TASSEL.
科研通智能强力驱动
Strongly Powered by AbleSci AI