Fuel Cells: Principles, Types, Fuels, and Applications

燃料电池 纳米技术 生化工程 材料科学 工程类 化学 化学工程
作者
Linda Carrette,K. Andreas Friedrich,Ulrich Stimming
出处
期刊:ChemPhysChem [Wiley]
卷期号:1 (4): 162-193 被引量:721
标识
DOI:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z
摘要

ChemPhysChemVolume 1, Issue 4 p. 162-193 Review Fuel Cells: Principles, Types, Fuels, and Applications Linda Carrette Dr., Linda Carrette Dr. Physik Department E 19 Technische Universität München James-Franck-Strasse 1 85748 Garching (Germany) Fax: (+49) 89-2891-2530Search for more papers by this authorK. Andreas Friedrich Dr., K. Andreas Friedrich Dr. Physik Department E 19 Technische Universität München James-Franck-Strasse 1 85748 Garching (Germany) Fax: (+49) 89-2891-2530Search for more papers by this authorUlrich Stimming Prof. Dr., Ulrich Stimming Prof. Dr. [email protected] Physik Department E 19 Technische Universität München James-Franck-Strasse 1 85748 Garching (Germany) Fax: (+49) 89-2891-2530Search for more papers by this author Linda Carrette Dr., Linda Carrette Dr. Physik Department E 19 Technische Universität München James-Franck-Strasse 1 85748 Garching (Germany) Fax: (+49) 89-2891-2530Search for more papers by this authorK. Andreas Friedrich Dr., K. Andreas Friedrich Dr. Physik Department E 19 Technische Universität München James-Franck-Strasse 1 85748 Garching (Germany) Fax: (+49) 89-2891-2530Search for more papers by this authorUlrich Stimming Prof. Dr., Ulrich Stimming Prof. Dr. [email protected] Physik Department E 19 Technische Universität München James-Franck-Strasse 1 85748 Garching (Germany) Fax: (+49) 89-2891-2530Search for more papers by this author First published: 20 December 2000 https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-ZCitations: 623 The authors' research and this review was funded by the Deutsche Forschungsgemeinschaft, reference 74/8-1 and Sti 74/8-2. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract From houses, to vehicles, and to mobile telephones: the fuel cell may replace the energy requirements of heating, internal combustion engines, and chemical batteries. This Review covers the basic physicochemical principles on which a fuel cell operates. The specific requirements from the materials to the systems in various fueld cells are discussed and concludes with actual applications. The image shows the main components of a Siemens alkaline fuel cell stack, namely the bipolar plates, the gas-permeable backings, and the electrode–electrolyte assembly. Abstract During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. References 1 B. M. Barnett, W. P. Teagan, J. Power Sources 1992, 37, 15. 10.1016/0378-7753(92)80060-O Web of Science®Google Scholar 2 F. D. Melle, J. Power Sources 1998, 71, 7. 10.1016/S0378-7753(97)02768-7 Web of Science®Google Scholar 3 D. Hart, J. Power Sources 2000, 86, 23. 10.1016/S0378-7753(99)00455-3 CASWeb of Science®Google Scholar 4 G. D. Callow, J. Power Sources 1999, 80, xvii. 10.1016/S0378-7753(99)00161-5 CASWeb of Science®Google Scholar 5 A. Bauen, D. Hart, J. Power Sources 2000, 86, 482. 10.1016/S0378-7753(99)00445-0 CASWeb of Science®Google Scholar 6 "Clean fuel cell energy for today": Platinum Met. Rev. 1999, 43, 14. Google Scholar 7 S. G. Chalk, J. F. Miller, F. W. Wagner, J. Power Sources 2000, 86, 40. 10.1016/S0378-7753(99)00481-4 CASWeb of Science®Google Scholar 8 A. U. Dufour, J. Power Sources 1998, 71, 19. 10.1016/S0378-7753(97)02732-8 CASWeb of Science®Google Scholar 9 Energiedaten, Bundesministerium für Wirtschaft und Technologie, Magdeburg, 1999. Google Scholar 10 P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 1994. Google Scholar 11 K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, 1992. Google Scholar 12 A. Damjanovic, M. A. Genshaw, J. O. M. Bockris, J. Chem. Phys. 1966, 45, 4057. 10.1063/1.1727457 CASWeb of Science®Google Scholar 13 H. S. Wroblowa, Y. C. Pan, G. Razumney, J. Electroanal. Chem. 1976, 69, 195. 10.1016/S0022-0728(76)80250-1 CASWeb of Science®Google Scholar 14 A. J. Appleby, M. Savy, J. Electroanal. Chem. 1978, 92, 15. 10.1016/S0022-0728(78)80113-2 CASWeb of Science®Google Scholar 15 R. W. Zurilla, R. K. Sen, E. Yeager, J. Electrochem. Soc. 1978, 125, 1103. 10.1149/1.2131628 CASWeb of Science®Google Scholar 16a V. S. Bagotskii, M. R. Tarasevich, V. Y. Filinovskii, Elektrochimiya 1969, 5, 1218; CASGoogle Scholar 16b M. L. Sattler, P. N. Ross, Ultramicroscopy 1986, 20, 21; 10.1016/0304-3991(86)90163-4 CASWeb of Science®Google Scholar 16c L. J. Bregoli, Electrochim. Acta 1978, 23, 489; 10.1016/0013-4686(78)85025-7 CASWeb of Science®Google Scholar 16d Y. Takasu, N. Ohashi, X.-G. Zhang, Y. Murakawi, H. Minagawa, S. Sato, K. Yahikozawa, Electrochim. Acta 1996, 41, 2595; 10.1016/0013-4686(96)00081-3 CASWeb of Science®Google Scholar 16e M. Watanabe, H. Sei, P. Stonehart, J. Electroanal. Chem. 1989, 261, 375. 10.1016/0022-0728(89)85006-5 CASWeb of Science®Google Scholar 17 K. Kinoshita, J. Electrochem. Soc. 1990, 137, 845. 10.1149/1.2086566 CASWeb of Science®Google Scholar 18 N. Giordano, E. Passalacqua, L. Pino, A. S. Arico, V. Antonucci, M. Vivaldi, K. Kinoshita, Electrochim. Acta 1991, 36, 1979. 10.1016/0013-4686(91)85082-I CASWeb of Science®Google Scholar 19 Y. Kiros, J. Electrochem. Soc. 1996, 143, 2152. 10.1149/1.1836974 CASWeb of Science®Google Scholar 20 Y. F. Yang, Y. H. Zhou, C. S. Cha, Electrochim. Acta 1995, 40, 2579. 10.1016/0013-4686(95)00247-C CASWeb of Science®Google Scholar 21 M. Peuckert, T. Yoneda, R. A. Dalla Betta, M. Boudart, J. Electrochem. Soc. 1986, 133, 944. 10.1149/1.2108769 CASWeb of Science®Google Scholar 22 Y. Takasu, N. Ohashi, X. G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Electrochim. Acta 1996, 41, 2595. 10.1016/0013-4686(96)00081-3 CASWeb of Science®Google Scholar 23 R. S. Weber, M. Peuckert, R. A. Dallabetta, M. Boudart, J. Electrochem. Soc. 1988, 135, 2535. 10.1149/1.2095371 CASWeb of Science®Google Scholar 24 M. Watanabe, S. Saegusa, P. Stonehart, Chem. Lett. 1988, 1487. 10.1246/cl.1988.1487 CASWeb of Science®Google Scholar 25 D. R. de Sena, E. R. Gonzalez, E. A. Ticianelli, Electrochim. Acta 1992, 37, 1855. 10.1016/0013-4686(92)85090-8 CASWeb of Science®Google Scholar 26 S. J. Clouser, J. C. Huang, E. Yeager, J. Appl. Electrochem. 1993, 23, 597. 10.1007/BF00721951 CASWeb of Science®Google Scholar 27a J. Barber, S. Morin, B. E. Conway, Electrochem. Soc. Proc., 1997, 97, 101; Web of Science®Google Scholar 27b B. N. Grgur, N. M. Markovic, P. N. Ross, Electrochim. Acta 1998, 43, 3631. 10.1016/S0013-4686(98)00120-0 CASWeb of Science®Google Scholar 28 B. N. Grgur, N. M. Markovic, P. N. Ross, J. Electrochem. Soc. 1999, 146, 1613. 10.1149/1.1391815 CASWeb of Science®Google Scholar 29 L. J. Burcham, I. E. Wachs, Catal. Today 1999, 49, 467. 10.1016/S0920-5861(98)00442-8 CASWeb of Science®Google Scholar 30 L. Liu, R. Viswanathan, R. Liu, E. S. Smotkin, Electrochem. Solid State Lett. 1998, 1, 123. 10.1149/1.1390658 CASWeb of Science®Google Scholar 31 R. W. McCabe, D. F. McCready, J. Phys. Chem. 1986, 90, 1428. 10.1021/j100398a043 CASWeb of Science®Google Scholar 32 G. T. Burstein, C. J. Barnett, A. R. Kucernak, K. R. Wiliams, Catal. Today 1997, 38, 425. 10.1016/S0920-5861(97)00107-7 CASWeb of Science®Google Scholar 33 A. Hamnett, Catal. Today 1997, 38, 445. 10.1016/S0920-5861(97)00054-0 CASWeb of Science®Google Scholar 34 J. Sobkowski, K. Franaszczuk, K. Dobrowolska, J. Electroanal. Chem. 1992, 330, 529. 10.1016/0022-0728(92)80329-3 CASWeb of Science®Google Scholar 35 H. Matsui, A. Kunugi, J. Electroanal. Chem. 1990, 292, 103. 10.1016/0022-0728(90)87330-M CASWeb of Science®Google Scholar 36 X. H. Xia, T. Iwasita, F. Ge, W. Vielstich, Electrochim. Acta 1996, 41, 711. 10.1016/0013-4686(95)00360-6 CASWeb of Science®Google Scholar 37 A. Wieckowski, M. Rubel, C. Gutierrez, J. Electroanal. Chem. 1995, 382, 97. 10.1016/0022-0728(94)03672-P Web of Science®Google Scholar 38 C. He, H. R. Kunz, J. M. Fenton, J. Electrochem. Soc. 1997, 144, 970. 10.1149/1.1837515 Web of Science®Google Scholar 39 M. Watanabe, S. Saegusa, P. Stonehart, J. Electroanal. Chem. 1989, 271, 213. 10.1016/0022-0728(89)80076-2 CASWeb of Science®Google Scholar 40 R. Parsons, T. Vandernoot, J. Electroanal. Chem. 1988, 257, 9. 10.1016/0022-0728(88)87028-1 CASWeb of Science®Google Scholar 41 S. Wasmus, A. Küver, J. Electroanal. Chem. 1999, 461, 14. 10.1016/S0022-0728(98)00197-1 CASWeb of Science®Google Scholar 42 M. P. Hogarth, G. A. Hards, Platinum Met. Rev. 1996, 40, 150. CASGoogle Scholar 43 A. J. Dickinson, Ph.D. thesis, University of Newcastle-upon-Tyne (UK), 2000, p. 250. Google Scholar 44a A. Hamnett in Comprehensive Chemical Kinetics, Vol. 37 ( ), Elsevier, Amsterdam, 1999, p. 635; Google Scholar 44b V. S. Bagotzky, Yu. B. Vassiliev, O. A. Khazova, J. Electroanal. Chem. 1977, 81, 229. 10.1016/S0022-0728(77)80019-3 Web of Science®Google Scholar 45 K. L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre, E. S. Smotkin, J. Electrochem. Soc. 1997, 144, 1543. 10.1149/1.1837638 CASWeb of Science®Google Scholar 46 Y. Morimoto, E. B. Yeager, J. Electroanal. Chem. 1998, 444, 95. 10.1016/S0022-0728(97)00563-9 CASWeb of Science®Google Scholar 47 M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem. 1987, 229, 395. 10.1016/0022-0728(87)85156-2 CASWeb of Science®Google Scholar 48 Z. Wei, H. Guo, Z. Tang, J. Power Sources 1996, 58, 239. 10.1016/S0378-7753(96)02389-0 CASWeb of Science®Google Scholar 49 P. Biedermann, B. Höhlein, B. Sackmann, Electro-Chemical Engineering and Energy ( ), Plenum, New York, 1995. Google Scholar 50 L. J. M. J. Blomen, M. N. Mugerwa, Fuel Cell Systems, Plenum, New York, 1993. 10.1007/978-1-4899-2424-7 Google Scholar 51 J. Appleby, F. R. Foulkes, Fuel Cell Handbook, Krieger, Melbourne, FL, 1993. Google Scholar 52 F. Albisu, European Seminar on Combined Production of Heat and Power (Co-Generation) (Ed.: J. Sirchis) Elsevier Applied Science 1989, p. 10. Google Scholar 53 E. D. Geeter, M. Mangan, S. Spaepen, W. Stinissen, G. Vennekens, J. Power Sources 1999, 80, 207. 10.1016/S0378-7753(99)00072-5 Web of Science®Google Scholar 54 Y. Kiros, S. Schwartz, J. Power Sources 2000, 87, 101. 10.1016/S0378-7753(99)00436-X CASWeb of Science®Google Scholar 55 K. Kordesch, J. Gsellmann, M. Cifrain, S. Voss, V. Hacker, R. R. Aronson, C. Fabjan, T. Hezje, J. Daniel-Ivad, J. Power Sources 1999, 80, 190. 10.1016/S0378-7753(98)00261-4 CASWeb of Science®Google Scholar 56 K. Kordesch, V. Hacker, J. Gsellmann, M. Cifrain, G. Faleschini, P. Enzinger, R. Fankhauser, M. Ortner, M. Muhr, R. R. Aronson, J. Power Sources 2000, 86, 162. 10.1016/S0378-7753(99)00429-2 CASWeb of Science®Google Scholar 57 K. Kordesch, G. Simader, Fuel Cells and Their Applications, VCH, Weinheim, 1996. 10.1002/352760653X Google Scholar 58 P. V. Wright, Electrochim. Acta 1998, 43, 1137. 10.1016/S0013-4686(97)10011-1 CASWeb of Science®Google Scholar 59 H. L. Yeager, A. Steck, J. Electrochem. Soc. 1981, 128, 1880. 10.1149/1.2127757 CASWeb of Science®Google Scholar 60 M. Wakizoe, O. A. Velev, S. Srinivasan, Electrochim. Acta 1995, 40, 335. 10.1016/0013-4686(94)00269-7 CASWeb of Science®Google Scholar 61 B. Baradie, C. Poinsignon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise, M. Vaujany, J. Power Sources 1998, 74, 8. 10.1016/S0378-7753(97)02816-4 CASWeb of Science®Google Scholar 62 K. M. Nouel, P. S. Fedkiw, Electrochim. Acta 1998, 43, 2381. 10.1016/S0013-4686(97)10151-7 CASWeb of Science®Google Scholar 63 K. M. Abraham, V. R. Koch, T. J. Blakley, J. Electrochem. Soc. 2000, 147, 1251. 10.1149/1.1393345 CASWeb of Science®Google Scholar 64 M. Doyle, S. K. Choi, G. Proulx, J. Electrochem. Soc. 2000, 147, 34. 10.1149/1.1393153 CASWeb of Science®Google Scholar 65 E. Peled, T. Duvdevani, A. Melman, Electrochem. Solid State Lett. 1998, 1, 210. 10.1149/1.1390687 CASWeb of Science®Google Scholar 66 E. Peled, T. Duvdevani, A. Melman in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 6. Google Scholar 67 T. Lehtinen, G. Sundholm, S. Holmberg, F. Sundholm, P. Björnbom, M. Bursell, Electrochim. Acta 1998, 43, 1881. 10.1016/S0013-4686(97)10005-6 CASWeb of Science®Google Scholar 68 H. P. Brack, F. N. Büchi, J. Huslage, G. G. Scherer in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 52. Google Scholar 69 K. Yasuda, O. Uchimoto, Z. Ogumi, Z.-i. Takehara in Symp. Batteries and Fuel Cells for Stationary and Electric Vehicle Applications, (Eds.: A. Langrebe, Z. Takehara), Honolulu, HI, 1993, p. 292. Google Scholar 70 T. Okada, S. Moller-Holst, O. Gorseth, S. Kjelstrup, J. Electroanal. Chem. 1998, 442, 137. 10.1016/S0022-0728(97)00499-3 CASWeb of Science®Google Scholar 71 Z. Ogumi, Z. Takehara, S. Yoshizawa, J. Electrochem. Soc. 1984, 131, 769. 10.1149/1.2115696 CASWeb of Science®Google Scholar 72 C. L. Gardner, A. V. Anantaraman, J. Electroanal. Chem. 1998, 449, 2009. 10.1016/S0022-0728(97)00408-7 Web of Science®Google Scholar 73 C. A. Edmondson, P. E. Stallworth, M. C. Wintersgill, J. J. Fontanella, Y. Dai, S. G. Greenbaum, Electrochim. Acta 1998, 43, 1295. 10.1016/S0013-4686(97)10033-0 CASWeb of Science®Google Scholar 74 K. H. Choia, D. J. Park, Y. W. Rho, Y. T. Kho, T. H. Lee, J. Power Sources 1998, 74, 146. 10.1016/S0378-7753(98)00048-2 Web of Science®Google Scholar 75 R. F. Savinell, J. S. Wainwright, M. Litt in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 81. Google Scholar 76 J. S. Wainwright, J.-T. Wang, D. Weng, R. F. Savinell, M. Litt, J. Electrochem. Soc. 1995, 142, L121. Google Scholar 77 M. S. Wilson, C. Zawodzinski, S. Gottesfeld in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 424. Google Scholar 78 M. Watanabe, Y. Satoh, C. Shimura, Symp. Batteries and Fuel Cells for Stationary and Electric Vehicle Applications (Eds.: A. R. Landgrebe, Z.-I. Takehara), Honolulu, HI, 1993, p. 302. Google Scholar 79 M. Watanabe, H. Uchida, Y. Seki, M. Emori, J. Electrochem. Soc. 1996, 143, 3847. 10.1149/1.1837307 CASWeb of Science®Google Scholar 80 T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, T. Arimura, Electrochim. Acta 1998, 43, 3741. 10.1016/S0013-4686(98)00132-7 CASWeb of Science®Google Scholar 81 T. A. J. Zawodzinski, T. E. Springer, F. Uribe, S. Gottesfeld, Solid State Ionics 1993, 60, 199. 10.1016/0167-2738(93)90295-E CASWeb of Science®Google Scholar 82 K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, T. H. Lee, J. Power Sources 1998, 74, 146. 10.1016/S0378-7753(98)00048-2 CASWeb of Science®Google Scholar 83 Z. Poltarzewski, P. Staiti, V. Alderucci, W. Wieczorek, N. Giordano, J. Electrochem. Soc. 1992, 139, 761. 10.1149/1.2069298 CASWeb of Science®Google Scholar 84 O. Teschke, J. Electrochem. Soc. 1983, 131, 1095. 10.1149/1.2115756 Web of Science®Google Scholar 85 S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, T. H. Lee, Electrochim. Acta 1998, 43, 3693. 10.1016/S0013-4686(98)00127-3 CASWeb of Science®Google Scholar 86 G. Faubert, R. Cote, J. P. Dodelet in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 30. Google Scholar 87 S. Gamburzev, C. Boyer, A. J. Appleby in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 23. Google Scholar 88 H.-F. Oetjen, V. M. Schmidt, U. Stimming, F. Trila, J. Electrochem. Soc. 1996, 143, 3838. 10.1149/1.1837305 CASWeb of Science®Google Scholar 89 R. Ianiello, V. M. Schmidt, U. Stimming, J. Stumper, A. Wallau, Electrochim. Acta 1994, 39, 1863. 10.1016/0013-4686(94)85176-X Web of Science®Google Scholar 90 J. Divisek, H.-F. Oetjen, V. Peinecke, V. M. Schmidt, U. Stimming, Electrochim. Acta 1998, 43, 3811. 10.1016/S0013-4686(98)00140-6 CASWeb of Science®Google Scholar 91 S. Gottesfeld, J. Pafford, J. Electrochem. Soc. 1988, 135, 2651. 10.1149/1.2095401 CASWeb of Science®Google Scholar 92 G. Holleck, D. Pasquariello, S. Clauson in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 150. Google Scholar 93a H. Binder, A. Köhling, G. Sandstede in From Electrocatalysis to Fuel Cells ( ), University of Washington Press, Seattle, WA, 1972, pp. 43-57; Google Scholar 93b H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem. 1993, 97, 12 020; 10.1021/j100148a030 CASWeb of Science®Google Scholar 93c H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem. 1994, 98, 617; 10.1021/j100053a042 CASWeb of Science®Google Scholar 93d H. A. Gasteiger, N. M. Markovic, J. P. N. Ross, J. Phys. Chem. 1995, 99, 8290; 10.1021/j100020a063 CASWeb of Science®Google Scholar 93e H. A. Gasteiger, N. M. Markovic, J. P. N. Ross, J. Phys. Chem. 1995, 99, 8945; 10.1021/j100022a002 CASWeb of Science®Google Scholar 93f M. Watanabe, S. Motoo, J. Electroanal. Chem. 1975, 60, 275. 10.1016/S0022-0728(75)80262-2 CASWeb of Science®Google Scholar 94a E. Herrero, K. Franaszczuk, A. Wieckowski, J. Electroanal. Chem. 1993, 361, 269; 10.1016/0022-0728(93)87065-4 CASWeb of Science®Google Scholar 94b K. A. Friedrich, K.-P. Geyzers, U. Linke, U. Stimming, J. Stumper, J. Electroanal. Chem. 1996, 402, 123; 10.1016/0022-0728(95)04237-7 Web of Science®Google Scholar 94c K. A. Friedrich, K.-P. Geyzers, U. Stimming, J. Stumper, R. Vogel, Electrochem. Soc. Proc. 1995, 95, 299; Google Scholar 94d K. A. Friedrich, K.-P. Geyzers, A. Marmann, U. Stimming, R. Vogel, Z. Phys. Chem. 1999, 208, 137; 10.1524/zpch.1999.208.Part_1_2.137 CASWeb of Science®Google Scholar 94e J. Davies, B. E. Hayden, D. J. Pegg, Electrochim. Acta 1998, 44, 1181. 10.1016/S0013-4686(98)00221-7 CASWeb of Science®Google Scholar 95 J. Solokowski, K. Franaszuzuk, A. Piasek, J. Electroanal. Chem. 1985, 196, 145. 10.1016/0022-0728(85)85086-5 Web of Science®Google Scholar 96 S. A. C. Barton, B. L. Murach, T. F. Fuller, A. C. West, J. Electrochem. Soc. 1998, 145, 3783. 10.1149/1.1838873 CASWeb of Science®Google Scholar 97 W. E. O'Grady, X. Qian, D. E. Ramaker, J. Phys. Chem. B 1997, 101, 5624. 10.1021/jp970967y CASWeb of Science®Google Scholar 98 B. D. McNicol, D. A. J. Rand, K. R. Williams, J. Power Sources 1999, 83, 15. 10.1016/S0378-7753(99)00244-X CASWeb of Science®Google Scholar 99 N. A. Hampson, M. J. Willars, B. D. McNicol, J. Power Sources 1979, 4, 191. 10.1016/0378-7753(79)85010-7 CASWeb of Science®Google Scholar 100 B. D. McNicol, R. T. Short, A. G. Chapman, J. Chem. Soc. Faraday Trans. 1 1976, 72, 2735. 10.1039/f19767202735 CASWeb of Science®Google Scholar 101 A. Hamnett, B. J. Kennedy, Electrochim. Acta 1988, 33, 1613. 10.1016/0013-4686(88)80233-0 CASWeb of Science®Google Scholar 102 A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, J. Power Sources 1995, 55, 159. 10.1016/0378-7753(94)02178-6 CASWeb of Science®Google Scholar 103 M. Götz, H. Wendt, Electrochim. Acta 1998, 43, 3637. 10.1016/S0013-4686(98)00121-2 CASWeb of Science®Google Scholar 104 A. S. Arico, A. K. Shukla, K. M. El-Khatib, P.Creti, V. Antonucci, J. Appl. Electrochem. 1999, 29, 671. 10.1023/A:1003538230286 CASWeb of Science®Google Scholar 105 L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu, E. S. Smotkin, Electrochim. Acta 1998, 43, 3657. 10.1016/S0013-4686(98)00123-6 CASWeb of Science®Google Scholar 106 R. Ramkumar, S. Dheenadayalan, R. Pattabiraman, J. Power Sources 1997, 69, 75. 10.1016/S0378-7753(97)02572-X CASWeb of Science®Google Scholar 107 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Stuttgart, Germany, personal communication. Google Scholar 108 W. Vielstich, A. Kuver, M. Krausa, A. C. Ferreira, K. Petrov, S. Srinivasan in Symp. Batteries and Fuel Cells for Stationary and Electric Vehicle Applications (Eds.: A. R. Landgrebe, Z.-I. Takehara), Honolulu, HI, 1993, p. 269. Google Scholar 109 A. K. Shukla, P. A. Christensen, A. J. Dickinson, A. Hamnett, J. Power Sources 1998, 76, 54. 10.1016/S0378-7753(98)00140-2 CASWeb of Science®Google Scholar 110 X. Ren, T. E. Springer, S. Gottesfeld, J. Electrochem. Soc. 2000, 147, 92. 10.1149/1.1393161 CASWeb of Science®Google Scholar 111 V. Tricoli in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 358. Google Scholar 112 A. Küver, W. Vielstich, J. Power Sources 1998, 74, 211. 10.1016/S0378-7753(98)00065-2 CASWeb of Science®Google Scholar 113 M. K. Ravikumar, A. K. Shukla, J. Electrochem. Soc. 1996, 143, 2601. 10.1149/1.1837054 CASWeb of Science®Google Scholar 114 N. Alonso-Vante, H. Tributsch, O. Solorza-Feria, Electrochim. Acta 1995, 40, 567. 10.1016/0013-4686(94)00377-D CASWeb of Science®Google Scholar 115 O. Solorza-Feria, K. Ellmer, M. Giersig, N. Alonso-Vante, Electrochim. Acta 1994, 39, 1647. 10.1016/0013-4686(94)85149-2 CASWeb of Science®Google Scholar 116 S. Gupta, D. Tryk, S. K. Zecevic, W. Aldred, D. Guo, R. F. Savinell, J. Appl. Electrochem. 1998, 28, 673. 10.1023/A:1003288609411 CASWeb of Science®Google Scholar 117 S. C. Barton, T. Patterson, E. Wang, T. F. Fuller, A. C. West in Second Int. Symp. Proton Conducting Membrane Fuel Cells II (Eds.: S. Gottesfeld, T. F. Fuller), Boston, MA, 1998, p. 238. Google Scholar 118 H. Böhm, J. Power Sources 1967/77, 1, 177. 10.1016/0378-7753(76)80020-1 Web of Science®Google Scholar 119 D. S. Chan, C. C. Wan, J. Power Sources 1994, 50, 163. 10.1016/0378-7753(94)01897-9 CASWeb of Science®Google Scholar 120 O. Savadogo, P. Beck, J. Electrochem. Soc. 1996, 143, 3842. 10.1149/1.1837306 CASWeb of Science®Google Scholar 121 B. S. Baker, H. C. Maru in Fourth Int. Symp. Carbonate Fuel Cell Technology (Eds.: J. R. Selman, I. Uchida, H. Wendt, D. A. Shores, T. F. Fuller), Montréal, PQ, 1997, p. 14. Google Scholar 122 K.-I. Ota in Fourth Int. Symp. Carbonate Fuel Cell Technology (Eds.: J. R. Selman, I. Uchida, H. Wendt, D. A. Shores, T. F. Fuller), Montréal, PQ, 1997, p. 238. Google Scholar 123 B. Rohland, U. Jantsch in Fourth Int. Symp. Carbonate Fuel Cell Technology (Eds.: J. R. Selman, I. Uchida, H. Wendt, D. A. Shores, T. F. Fuller), Montréal, PQ, 1997, p. 212. Google Scholar 124 C. Yuh, R. Johnsen, M. Farooque, H. Maru, J. Power Sources 1995, 56, 1. 10.1016/0378-7753(95)80001-W CASWeb of Science®Google Scholar 125 A. C. Schoeler, T. D. Kaun, I. Bloom, M. Lanagan, M. Krumpelt, J. Electrochem. Soc. 2000, 147, 916. 10.1149/1.1393292 CASWeb of Science®Google Scholar 126 S. Hamakawa, R. Shiozaki, T. Hayakawa, K. Suzuki, K. Murata, K. Takehira, M. Koizumi, J. Nakamura, T. Uchijima, J. Electrochem. Soc. 2000, 147, 839. 10.1149/1.1393280 CASWeb of Science®Google Scholar 127 M. Ihara, C. Yokoyama, A. Abudula, R. Kato, H. Komiyama, K. Yamada, J. Electrochem. Soc. 1999, 146, 2481. 10.1149/1.1391959 CASWeb of Science®Google Scholar 128 S. Park, J. M. Vohs, R. J. Gorte, Nature 2000, 404, 265. 10.1038/35005040 CASPubMedWeb of Science®Google Scholar 129 U. Birnbaum, E. Riensche, U. Stimming in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 112. Google Scholar 130 S. C. Singhal in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 37. Google Scholar 131 R. Diethelm, J. Brun, T. Gamper, M. Keller, R. Kruschwitz, D. Lenel in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 79. Google Scholar 132 S. Kawasaki, K. Okumura, Y. Esaki, M. Hattori, Y. Sakaki, J. Fujita, S. Takeuchi in Proc. Fifth Int. Symp. Solid Oxide Fuel (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 171. Google Scholar 133 T. Hibino, H. Tsunekawa, S. Tanimoto, M. Sano, J. Electrochem. Soc. 2000, 147, 1338. 10.1149/1.1393359 CASWeb of Science®Google Scholar 134 Y. Shibuya, H. Nagamoto in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 510. Google Scholar 135 R. Doshi, V. L. Richards, M. Krumpelt in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 379. Google Scholar 136 H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 394. Google Scholar 137 H. P. Buchkremer, U. Diekmann, L. G. J. de Haart, H. Kabs, U. Stimming, D. Stöver in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 160. Google Scholar 138 M. Lang, R. Henne, G. Schiller, N. Wagner in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 461. Google Scholar 139 A. Gubner, H. Landes, J. Metzger, H. Seeg, R. Stübner in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 844. Google Scholar 140 P. Vernoux, J. Guindet, E. Gehain, M. Kleitz in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 219. Google Scholar 141 B. C. H. Steele in British Ceramic Proceedings ( ), The Institute of Materials, London, UK, 1996, p. 151. Google Scholar 142 R. Doshi, V. L. Richards, J. D. Carter, X. Wang, M. Krumpelt, J. Electrochem. Soc. 1999, 146, 1273. 10.1149/1.1391758 CASWeb of Science®Google Scholar 143 J. P. P. Huijsmans, F. P. F. van Berkel, G. M. Christie, J. Power Sources 1998, 71, 107. 10.1016/S0378-7753(97)02789-4 CASWeb of Science®Google Scholar 144 M. Janousek, W. Köck, M. Baumgärtner, H. Greiner in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 1225. Google Scholar 145 B. Krogh, M. Brustad, M. Dahle, J. L. Eilertsen, R. Ödegärd in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 1234. Google Scholar 146 T. Malkow, U. van de Crone, A. M. Laptev, T. Koppitz, U. Breuer, W. J. Quadakkers in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 1244. Google Scholar 147 R. Rückdäschel, R. Henne, G. Schiller, H. Greiner in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 1273. Google Scholar 148 H. P. Buchkremer, SOFC-Industrieseminar, KFA, Jülich, Germany, 1995, p. 166. Google Scholar 149 Y. Sakaki, M. Hattori, Y. Esaki, S. Ohara, T. Fukui, K. Kodera, Y. Kubo in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 652. Google Scholar 150 A. Momma, Y. Kaga, K. Fujii, K. Hohjyo, M. Kanazawa, T. Okuo in Proc. Fifth Int. Symp. Solid Oxide Fuel (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 311. Google Scholar 151 J. Will, L. J. Gauckler in Proc. Fifth Int. Symp. Solid Oxide Fuel Cells (Eds.: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert), Aachen, Germany, 1997, p. 757. Google Scholar 152 Y. Jamal, M. L. Wyszynski, Int. J. Hydrogen Energy 1994, 19, 557. 10.1016/0360-3199(94)90213-5 CASWeb of Science®Google Scholar 153 P. Sharke, Mech. Engl. 1999, 121, 46. Web of Science®Google Scholar 154 M. L. Cubiero, J. L. G. Fierro, J. Catal. 1998, 179, 150. 10.1006/jcat.1998.2184 Web of Science®Google Scholar 155 Environex, Inc., Fuel Cells for Vehicles, Wayne, PA, USA, 1995. Google Scholar 156 B. Emonts, J. B. Hansen, S. L. Jörgensen, B. Höhlein, R. Peters, J. Power Sources 1998, 71, 288. 10.1016/S0378-7753(97)02724-9 CASWeb of Science®Google Scholar 157 J. M. Ogden, M. M. Steinbugler, T. G. Kreutz, J. Power Sources 1999, 79, 143. 10.1016/S0378-7753(99)00057-9 CASWeb of Science®Google Scholar 158 L. Ma, C. Jiang, A. A. Adesina, D. L. Trimm, M. S. Wainwright, Chem. Eng. J. 1996, 62, 103. CASWeb of Science®Google Scholar 159 N. Edwards, S. R. Ellis, J. C. Frost, S. E. Golunski, A. N. J. van Keulen, N. G. Lindewald, J. G. Reinkingh, J. Power Sources 1998, 71, 123. 10.1016/S0378-7753(97)02797-3 CASWeb of Science®Google Scholar 160 R. Buxbaum, REB Research and Consulting, http://www.rebresearch.com/MRessay.html. Google Scholar 161 J. R. Rostrup-Nielsen, Catalytic Steam Reforming, Vol. 5, Springer, Berlin, 1984. Google Scholar 162 K. Aasberg-Petersen, C. S. Nielsen, S. L. G. Jörgensen, Catal. Today 1998, 46, 193. 10.1016/S0920-5861(98)00341-1 CASWeb of Science®Google Scholar 163 E. A. Gilles, Chem. Eng. Prog. 1980, 76, 88. Web of Science®Google Scholar 164 V. Recupero, L. Pino, R. D. Leonardo, M. Lagana, G. Maggio, J. Power Sources 1998, 71, 208. 10.1016/S0378-7753(97)02798-5 CASWeb of Science®Google Scholar 165 Ä. Slagtern, H. M. Swaan, U. Olsbye, I. M. Dahl, C. Mirodatos, Catal. Today 1998, 46, 107. 10.1016/S0920-5861(98)00332-0 CASWeb of Science®Google Scholar 166 O. Deutschmann, L. D. Schmidt, AIChE J. 1998, 44, 2465. 10.1002/aic.690441114 CASWeb of Science®Google Scholar 167 K. Ledjeff-Hey, T. Kalk, F. Mahlendorf, O. Niemzig, J. Roes, Portable Fuel Cells, Lucerne, Switzerland, 1999, p. 193; K. Ledjeff-Hey, T. Kalk, F. Mahlendorf, O. Niemzig, A. Trautmann, J. Roes, J. Pow. Sources, 2000, 86, 166. Google Scholar 168 L. Yang, D. P. Bloomfield, Fuel Cell Seminar, Palm Springs, CA, 1998. Google Scholar 169 P. Hoffmann, The Hydrogen and Fuel Cell Letter 2000, 15, 1. Google Scholar 170 K. Sekizawa, S.-i. Yano, K. Eguchi, H. Arai, Appl. Catal. A 1998, 169, 291. 10.1016/S0926-860X(98)00018-0 CASWeb of Science®Google Scholar 171 S. H. Oh, R. M. Sinkevitch, J. Catal. 1993, 142, 254. 10.1006/jcat.1993.1205 CASWeb of Science®Google Scholar 172 A. Heinzel, R. Nolte, K. Ledjeff-Hey, M. Zedda, Electrochim. Acta 1998, 43, 3817. 10.1016/S0013-4686(98)00141-8 CASWeb of Science®Google Scholar 173 Sandia National Laboratories, Metal Hydride Applications, http://146.246.239.9:591/FMPro. Google Scholar 174 Powerball Technologies, The Concept of Powerball Technology, http://www.powerball.net/inside/concept/index.shtml, 2000. Google Scholar 175 "Hydrogen, the fuel for the future": Energy Laboratory, DE-B 95004024, 1995. Google Scholar 176 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 1999, 286, 1127. 10.1126/science.286.5442.1127 CASPubMedWeb of Science®Google Scholar 177 "Atomic-sized carbon nanotubes show promising tunable structure, electronic properties", University of North Carolina at Chapel Hill, Science Daily 2000. Google Scholar 178 S. Hill, New Scientist 1996, 152 (2061), 20. Web of Science®Google Scholar 179a R. T. K. Baker, Synthesis, Properties and Applications of Graphite Nanofibers, http://itri.loyola.edu/nano/us_r_n_d/09_03.htm, 2000; Google Scholar 179b M. Rzepka, P. Lamp, M. A. De La Casallilo, J. Phys. Chem. B, 1998, 102, 10 894, and references therein. 10.1021/jp9829602 CASWeb of Science®Google Scholar 180 D. Chu, R. Jiang, J. Power Sources 1999, 80, 226. 10.1016/S0378-7753(98)00263-8 CASWeb of Science®Google Scholar 181 J. Weitkamp, Zeolites as Media for Hydrogen Storage, Universität Stuttgart, http://www.uni-stuttgart.de/sfb270/B7_E.htm, 2000. Google Scholar 182 K. Joon, J. Power Sources 1998, 71, 12. 10.1016/S0378-7753(97)02765-1 CASWeb of Science®Google Scholar 183 Toshiba Corp., Environmentally Friendly Co-Generation Package—200 kW Fuel Cell Power Plant, personal communication. Google Scholar 184 Daimler–Chrysler, http://www.daimlerchrysler.com, 1999. Google Scholar 185 Mazda Technology, company brochure. Google Scholar 186 Zevco, company brochure. Google Scholar 187 R. G. Hockaday in Fuel Cell Conference, New Orleans, LA; http://sites.netscape.net/etsoupanarias/mhtx2.html. Google Scholar 188 Fraunhofer Institut, Fuel Cell Supplies Electricity for Laptop, http://www.ise.fhg.de/Products/brennstoffzelle.html, 2000. Google Scholar 189 H. Wendt, M. Götz, Chem. Unserer Zeit 1997, 31, 301. 10.1002/ciuz.19970310606 CASWeb of Science®Google Scholar 190 Fuel Cells 2000, http://www.fuelcells.org/. Google Scholar 191 http://www.h2fc.com/. Google Scholar Citing Literature Volume1, Issue4December 15, 2000Pages 162-193 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wjx发布了新的文献求助10
1秒前
1秒前
3秒前
4秒前
5秒前
5秒前
兴奋棉花糖完成签到,获得积分10
6秒前
传奇3应助wjx采纳,获得10
8秒前
8秒前
的的完成签到,获得积分10
8秒前
8秒前
9秒前
66发布了新的文献求助10
9秒前
10秒前
11秒前
繁荣的大象完成签到 ,获得积分10
12秒前
13秒前
NexusExplorer应助小猪采纳,获得30
13秒前
传奇3应助正直草丛采纳,获得10
15秒前
15秒前
16秒前
16秒前
昏睡的雨寒完成签到,获得积分20
17秒前
Peng发布了新的文献求助10
17秒前
17秒前
18秒前
隐飞薇完成签到 ,获得积分10
18秒前
duxiao发布了新的文献求助10
18秒前
重要鑫磊完成签到,获得积分10
19秒前
yhchow0204应助Arrebol采纳,获得10
20秒前
puzhongjiMiQ发布了新的文献求助10
21秒前
puzhongjiMiQ发布了新的文献求助30
21秒前
puzhongjiMiQ发布了新的文献求助10
21秒前
puzhongjiMiQ发布了新的文献求助10
21秒前
puzhongjiMiQ发布了新的文献求助10
21秒前
puzhongjiMiQ发布了新的文献求助10
21秒前
21秒前
puzhongjiMiQ发布了新的文献求助10
22秒前
puzhongjiMiQ发布了新的文献求助10
22秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409099
求助须知:如何正确求助?哪些是违规求助? 2105043
关于积分的说明 5315997
捐赠科研通 1832563
什么是DOI,文献DOI怎么找? 913085
版权声明 560733
科研通“疑难数据库(出版商)”最低求助积分说明 488238