已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs

一般化 可视化快速呈现 计算机科学 频道(广播) 人工智能 选择(遗传算法) 数据挖掘 机器学习 模式识别(心理学) 任务(项目管理) 数学 认知 电信 心理学 数学分析 管理 神经科学 经济
作者
Meng Xu,Shengyang Li,Dan Wang,Yijun Wang,Lijian Zhang,Xiaoqian Wei
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046076-046076 被引量:12
标识
DOI:10.1088/1741-2552/ac0489
摘要

Abstract Objective. Achieving high precision rapid serial visual presentation (RSVP) task often requires many electrode channels to obtain more information. However, the more channels may contain more redundant information and also lead to its limited practical applications. Therefore, it is necessary to reduce the number of channels to enhance the classification performance and users experience. Furthermore, cross-subject generalization has always been one of major challenges in electroencephalography channel reduction, especially in the RSVP paradigm. Most search-based channel selection method presented in the literature are single-objective methods, the classification accuracy (ACC) is usually chosen as the only criterion. Approach. In this article, the idea of multi-objective optimization was introduced into the RSVP channel selection to minimize two objectives: classification error and the number of channels. By combining a multi-objective evolutionary algorithm for solving large-scale sparse problems and hierarchical discriminant component analysis (HDCA), a novel channel selection method for RSVP was proposed. After that, the cross-subject generalization validation through the proposed channel selection method. Main results. The proposed method achieved an average ACC of 95.41% in a public dataset, which is 3.49% higher than HDCA. The ACC was increased by 2.73% and 2.52%, respectively. Besides, the cross-subject generalization models in channel selection, namely special-16 and special-32, on untrained subjects show that the classification performance is better than the Hoffmann empirical channels. Significance. The proposed channel selection method could reduce the calibration time in the experimental preparation phase and obtain a better accuracy, which is promising application in the RSVP scenario that requires low-density electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助犹豫冰淇淋采纳,获得10
1秒前
1秒前
奈何应助kimon采纳,获得10
3秒前
sum完成签到 ,获得积分20
4秒前
顺利的寒云完成签到 ,获得积分10
4秒前
酷酷的汉堡完成签到,获得积分10
6秒前
科研通AI5应助Yangzx采纳,获得10
6秒前
TSWAKS发布了新的文献求助10
7秒前
9秒前
10秒前
leslie发布了新的文献求助10
14秒前
武雨寒发布了新的文献求助10
15秒前
16秒前
16秒前
小二郎应助日日是春日采纳,获得10
17秒前
李健的小迷弟应助张jy采纳,获得10
20秒前
小蘑菇应助胡诗剑采纳,获得10
21秒前
24秒前
26秒前
26秒前
29秒前
小白又鹏发布了新的文献求助10
29秒前
宴之思完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
Yangzx发布了新的文献求助10
32秒前
FashionBoy应助尛森采纳,获得10
32秒前
Dream完成签到,获得积分10
33秒前
33秒前
张jy发布了新的文献求助10
34秒前
2568269431发布了新的文献求助10
34秒前
sensAn发布了新的文献求助10
34秒前
阳光飞槐完成签到,获得积分10
35秒前
啥也不会完成签到,获得积分10
37秒前
grace完成签到,获得积分10
37秒前
直率香寒发布了新的文献求助10
38秒前
所所应助怕黑的孤菱采纳,获得10
40秒前
zz完成签到,获得积分10
41秒前
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646