亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Artificial Intelligence Model for Predicting the 5-Year Survival Status of Osteosarcoma Patients Based on the SEER Database and XGBoost Algorithm

骨肉瘤 计算机科学 医学 癌症 人工智能 肿瘤科 预测建模 数据库 生存分析 比例危险模型 机器学习 逻辑回归 协变量
作者
Jiuzhou Jiang,Yiyun Wang,Pengchen Qiu,Chenchen Zhao,Bao Qian,Xianfeng Lin,Shunwu Fan
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3420374
摘要

Osteosarcoma is the most common bone malignancy, with the highest incidence in children and adolescents. Survival rate prediction is important for improving prognosis and planning therapy. However, there is still no prediction model with a high accuracy rate for osteosarcoma. Therefore, we aimed to construct an artificial intelligence model for predicting the 5-year survival of osteosarcoma patients by using extreme gradient boosting (XGBoost), a large-scale machine-learning algorithm. We identified cases of osteosarcoma in the Surveillance, Epidemiology, and End Results (SEER) Research Database (2004-2014) and excluded substandard samples. The study population was 835 and was divided into the training set (n = 668) and validation set (n = 167). Characteristics selected via survival analyses were used to construct the model. Receiver operating characteristic and decision curve analyses were performed to evaluate the prediction model. Age, primary tumor site, histological grade, extension stage, tumor size, local lymphatic metastasis, distant metastasis, radiation, chemotherapy and surgery were selected as the characteristics to construct the XGBoost model. The accuracy of the prediction model was excellent both in the training set (AUC = 0.977) and the validation set (AUC = 0.911). Decision curve analyses proved the model could be used to support clinical decisions. Two other representative artificial intelligence models (support vector machine and Bayesian network) were also tested and proved inferior to the XGBoost model. XGBoost is an effective algorithm for predicting 5-year survival of osteosarcoma patients. Our prediction model had excellent accuracy and is therefore useful in clinical settings. Funding Statement: This work was supported in part by the National Nature Science Fund of China (81702143, 81772387 and 81472064); the Public Projects of Zhejiang Province (LGF19H060013) and the Natural Science Foundation of Zhejiang Province of China (LQ16C110001). Declaration of Interests: The authors declare that they have no conflicts of interest. Ethical Approval Statement: We obtained permission to access the files of SEER database. The personal identifying information was not involved in this study so that the informed consent was not required. This study was reviewed and approved by the Medical Ethic Committee of Sir Run Run Shaw hospital affiliated to Medical College of Zhejiang University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研助理完成签到 ,获得积分10
7秒前
紫霃发布了新的文献求助10
10秒前
紫霃完成签到,获得积分10
20秒前
爆米花完成签到,获得积分10
26秒前
Bowman完成签到,获得积分10
36秒前
Ulrica发布了新的文献求助10
38秒前
暴躁的寻云完成签到 ,获得积分10
54秒前
dd完成签到 ,获得积分10
1分钟前
SciGPT应助fl采纳,获得10
1分钟前
1分钟前
1分钟前
fl完成签到,获得积分10
1分钟前
1分钟前
1分钟前
fl发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助知足的憨人*-*采纳,获得10
1分钟前
北侨发布了新的文献求助10
1分钟前
北侨完成签到,获得积分10
1分钟前
1分钟前
动漫大师发布了新的文献求助10
1分钟前
勇敢虫子不怕困难完成签到,获得积分10
2分钟前
斯寜应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
斯寜应助科研通管家采纳,获得20
2分钟前
morena应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
斯寜应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
润润润完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
暮雪残梅完成签到 ,获得积分10
3分钟前
欣喜尔安完成签到,获得积分10
3分钟前
3分钟前
dahafei完成签到,获得积分10
3分钟前
斯寜应助科研通管家采纳,获得10
3分钟前
和珈欢乐应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215