Deep learning-based prediction of the T cell receptor–antigen binding specificity

T细胞受体 主要组织相容性复合体 抗原 生物 免疫学 T细胞 免疫疗法 表位 计算生物学 癌症研究 免疫系统
作者
Tianshi Lu,Ze Zhang,James Zhu,Yunguan Wang,Peixin Jiang,Xue Xiao,Chantale Bernatchez,John V. Heymach,Don L. Gibbons,Jun Wang,Lin Xu,Alexandre Reuben,Tao Wang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (10): 864-875 被引量:192
标识
DOI:10.1038/s42256-021-00383-2
摘要

Neoantigens play a key role in the recognition of tumor cells by T cells. However, only a small proportion of neoantigens truly elicit T cell responses, and fewer clues exist as to which neoantigens are recognized by which T cell receptors (TCRs). We built a transfer learning-based model, named pMHC-TCR binding prediction network (pMTnet), to predict TCR-binding specificities of neoantigens, and T cell antigens in general, presented by class I major histocompatibility complexes (pMHCs). pMTnet was comprehensively validated by a series of analyses, and showed advance over previous work by a large margin. By applying pMTnet in human tumor genomics data, we discovered that neoantigens were generally more immunogenic than self-antigens, but HERV-E, a special type of self-antigen that is re-activated in kidney cancer, is more immunogenic than neoantigens. We further discovered that patients with more clonally expanded T cells exhibiting better affinity against truncal, rather than subclonal, neoantigens, had more favorable prognosis and treatment response to immunotherapy, in melanoma and lung cancer but not in kidney cancer. Predicting TCR-neoantigen/antigen pairs is one of the most daunting challenges in modern immunology. However, we achieved an accurate prediction of the pairing only using the TCR sequence (CDR3β), antigen sequence, and class I MHC allele, and our work revealed unique insights into the interactions of TCRs and pMHCs in human tumors using pMTnet as a discovery tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助桑叶采纳,获得10
1秒前
卡卡西应助任性黑裤采纳,获得30
1秒前
温婉的凡阳完成签到 ,获得积分10
2秒前
独摇之完成签到,获得积分10
2秒前
678完成签到,获得积分10
3秒前
4秒前
cm发布了新的文献求助10
5秒前
7秒前
自信鑫鹏完成签到,获得积分10
8秒前
9秒前
10秒前
kelsey完成签到 ,获得积分10
10秒前
11秒前
dxy发布了新的文献求助10
15秒前
ChitrumJihurf发布了新的文献求助10
15秒前
笑嘻嘻关注了科研通微信公众号
15秒前
僦是卜够发布了新的文献求助10
15秒前
16秒前
参禅不说话完成签到,获得积分10
16秒前
16秒前
Moonflower发布了新的文献求助10
19秒前
乐乐应助佟白易采纳,获得10
19秒前
科目三应助南巷的用户名采纳,获得10
19秒前
yyy应助Possession采纳,获得10
20秒前
哈哈哈哈发布了新的文献求助10
21秒前
22秒前
认真的焦完成签到,获得积分10
22秒前
肖聪发布了新的文献求助10
23秒前
复成完成签到 ,获得积分10
24秒前
25秒前
疯狂的科研小羊完成签到,获得积分10
26秒前
lipeng发布了新的文献求助10
26秒前
27秒前
28秒前
Lucas应助能干的鞅采纳,获得10
29秒前
29秒前
笑嘻嘻发布了新的文献求助10
30秒前
温暖白梅发布了新的文献求助10
32秒前
32秒前
wqf发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939767
求助须知:如何正确求助?哪些是违规求助? 3485867
关于积分的说明 11034978
捐赠科研通 3215758
什么是DOI,文献DOI怎么找? 1777409
邀请新用户注册赠送积分活动 863515
科研通“疑难数据库(出版商)”最低求助积分说明 798914