A bidirectional LSTM deep learning approach for intrusion detection

计算机科学 入侵检测系统 水准点(测量) 人工智能 短时记忆 机器学习 假警报 数据挖掘 基于异常的入侵检测系统 计算机安全 人工神经网络 循环神经网络 大地测量学 地理
作者
Yakubu Imrana,Yanping Xiang,Liaqat Ali,Zaharawu Abdul-Rauf
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:185: 115524-115524 被引量:214
标识
DOI:10.1016/j.eswa.2021.115524
摘要

The rise in computer networks and internet attacks has become alarming for most service providers. It has triggered the need for the development and implementation of intrusion detection systems (IDSs) to help prevent and or mitigate the challenges posed by network intruders. Over the years, intrusion detection systems have played and continue to play a very significant role in spotting network attacks and anomalies. Numerous researchers around the globe have proposed many IDSs to combat the threat of network invaders. However, most of the previously proposed IDSs have high rates of raising false alarms. Additionally, most existing models suffer the difficulty of detecting the different attack types, especially User-to-Root (U2R) and Remote-to-Local (R2L) attacks. These two types of attacks often appear to have lower detection accuracy for the existing models. Hence, in this paper, we propose a bidirectional Long-Short-Term-Memory (BiDLSTM) based intrusion detection system to handle the challenges mentioned above. To train and measure our model’s performance, we use the NSL-KDD dataset, a benchmark dataset for most IDSs. Experimental results show and validate the effectiveness of the BiDLSTM approach. It outperforms conventional LSTM and other state-of-the-art models in terms of accuracy, precision, recall, and F-score values. It also has a much more reduced false alarm rate than the existing models. Furthermore, the BiDLSTM model achieves a higher detection accuracy for U2R and R2L attacks than the conventional LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路十三发布了新的文献求助10
刚刚
橘子味汽水完成签到 ,获得积分10
刚刚
刚刚
1秒前
豪哥大大完成签到,获得积分10
1秒前
搜集达人应助深情冬云采纳,获得30
2秒前
3秒前
bc应助zyh采纳,获得20
3秒前
过时的白云完成签到,获得积分10
3秒前
辣目童子完成签到 ,获得积分10
3秒前
Owen应助舒适的虔采纳,获得10
4秒前
4秒前
呵呵哒完成签到,获得积分10
5秒前
完美世界应助啊咧采纳,获得10
5秒前
黄毛虎发布了新的文献求助10
6秒前
酷炫甜瓜完成签到,获得积分10
6秒前
7秒前
霍霍完成签到 ,获得积分10
7秒前
梅子黄时雨完成签到,获得积分10
8秒前
中草药完成签到,获得积分10
8秒前
8秒前
略略略完成签到 ,获得积分10
9秒前
a31发布了新的文献求助10
9秒前
9秒前
10秒前
yywa发布了新的文献求助10
10秒前
10秒前
Shine完成签到 ,获得积分10
10秒前
彩色飞柏发布了新的文献求助10
11秒前
清秋完成签到,获得积分10
11秒前
大力哈密瓜完成签到,获得积分10
11秒前
11秒前
HQ完成签到,获得积分10
12秒前
12秒前
路十三完成签到,获得积分10
12秒前
12秒前
科研通AI5应助budingman采纳,获得30
13秒前
深情冬云发布了新的文献求助30
13秒前
13秒前
Oliver发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853