Depression Intensity Estimation via Social Media: A Deep Learning Approach

萧条(经济学) 社会距离 社会化媒体 机器学习 人工智能 心理健康 人际交往 心理学 计算机科学 2019年冠状病毒病(COVID-19) 精神科 社会心理学 医学 万维网 疾病 病理 传染病(医学专业) 经济 宏观经济学
作者
Shreya Ghosh,Tarique Anwar
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 1465-1474 被引量:103
标识
DOI:10.1109/tcss.2021.3084154
摘要

Depression has become a big problem in our society today. It is also a major reason for suicide, especially among teenagers. In the current outbreak of coronavirus disease (COVID-19), the affected countries have recommended social distancing and lockdown measures. Resulting in interpersonal isolation, these measures have raised serious concerns for mental health and depression. Generally, clinical psychologists diagnose depressed people via face-to-face interviews following the clinical depression criteria. However, often patients tend to not consult doctors in their early stages of depression. Nowadays, people are increasingly using social media to express their moods. In this article, we aim to predict depressed users as well as estimate their depression intensity via leveraging social media (Twitter) data, in order to aid in raising an alarm. We model this problem as a supervised learning task. We start with weakly labeling the Twitter data in a self-supervised manner. A rich set of features, including emotional, topical, behavioral, user level, and depression-related $n$ -gram features, are extracted to represent each user. Using these features, we train a small long short-term memory (LSTM) network using Swish as an activation function, to predict the depression intensities. We perform extensive experiments to demonstrate the efficacy of our method. We outperform the baseline models for depression intensity estimation by achieving the lowest mean squared error of 1.42 and also outperform the existing state-of-the-art binary classification method by more than 2% of accuracy. We found that the depressed users frequently use negative words such as stress and sad, mostly post during late nights, highly use personal pronouns and sometimes also share personal events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺顺发布了新的文献求助10
刚刚
孙燕应助Rixxed采纳,获得10
刚刚
研友_85YJY8发布了新的文献求助10
刚刚
temaxs发布了新的文献求助10
1秒前
打卡下班应助niu采纳,获得10
1秒前
传奇3应助大尾巴白采纳,获得10
2秒前
Qingwenxin发布了新的文献求助10
2秒前
今后应助大尾巴白采纳,获得10
2秒前
ding应助大尾巴白采纳,获得10
2秒前
bkagyin应助大尾巴白采纳,获得10
2秒前
顾矜应助大尾巴白采纳,获得10
2秒前
2秒前
3秒前
Starlight发布了新的文献求助10
3秒前
tourist585发布了新的文献求助10
4秒前
斯文败类应助成绩好采纳,获得10
4秒前
张乐发布了新的文献求助10
4秒前
吴陈发布了新的文献求助10
5秒前
5秒前
包子完成签到,获得积分10
6秒前
maclogos发布了新的文献求助10
6秒前
6秒前
章千万发布了新的文献求助10
7秒前
Orange应助张道恒采纳,获得10
7秒前
柔弱的葫芦娃完成签到 ,获得积分10
7秒前
无私诗桃发布了新的文献求助10
8秒前
英姑应助baolong采纳,获得10
8秒前
包子发布了新的文献求助10
8秒前
10秒前
Qingfeng完成签到,获得积分10
10秒前
汉堡包应助多多采纳,获得10
10秒前
11秒前
搜集达人应助fengmian采纳,获得10
12秒前
霜降发布了新的文献求助10
12秒前
乐观的雨发布了新的文献求助20
14秒前
15秒前
炙热的雨旋完成签到,获得积分10
15秒前
15秒前
隐形曼青应助无私诗桃采纳,获得10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108273
求助须知:如何正确求助?哪些是违规求助? 3646389
关于积分的说明 11550347
捐赠科研通 3352356
什么是DOI,文献DOI怎么找? 1842043
邀请新用户注册赠送积分活动 908372
科研通“疑难数据库(出版商)”最低求助积分说明 825490