Missing traffic data imputation using a dual-stage error-corrected boosting regressor with uncertainty estimation

插补(统计学) 缺少数据 计算机科学 估计员 数据挖掘 Boosting(机器学习) 探测器 统计 人工智能 机器学习 数学 电信
作者
Mankirat Kaur,Sarbjeet Singh,Naveen Aggrawal
出处
期刊:Information Sciences [Elsevier]
卷期号:586: 344-373 被引量:5
标识
DOI:10.1016/j.ins.2021.11.049
摘要

The missing data problem – attributed to malfunctioning detectors, packet loss during transmission, or data removed by quality control procedures – is unavoidable in most traffic-related datasets. However, this problem has adversely affected traffic engineering applications as they heavily rely on accurate and comprehensive data. This study aims to impute missing loop detector data in order to improve the estimation results of traffic flow analysis. This paper presents a statistically principled methodology that focuses not only on proposing a computationally efficient imputation approach, but also on assessing the uncertainty associated with imputed values. The proposed methodology quantifies the accuracy of imputation and estimation of uncertainty for a range of challenging patterns of missing loop detector data, and compares them with existing methods. The results of the analysis demonstrate that the performance of the proposed approach remains unaffected by the presence of a large number of missing patterns and reflects the true statistical properties of the principal data. The proposed approach is also comparatively less computationally complex than the existing methods. Further, the comparative analysis of the proposed estimator shows that the generated prediction intervals are reasonably accurate and conform to the desired confidence levels with relatively small interval width.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasasas完成签到,获得积分10
2秒前
jaywzz发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
稳重的若雁完成签到,获得积分10
3秒前
3秒前
科研通AI6.1应助月半战戈采纳,获得10
4秒前
4秒前
6秒前
7秒前
7秒前
科研通AI6.1应助郑浩采纳,获得10
8秒前
楓秋完成签到 ,获得积分10
9秒前
000完成签到 ,获得积分10
10秒前
芊芊完成签到,获得积分10
11秒前
12秒前
茶壶喝茶发布了新的文献求助10
12秒前
快乐的风发布了新的文献求助10
12秒前
12秒前
qjq琪发布了新的文献求助10
13秒前
酷波er应助萤火虫采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
鲤角兽完成签到,获得积分10
15秒前
月半战戈发布了新的文献求助10
17秒前
Watermanlil发布了新的文献求助10
19秒前
小初完成签到,获得积分10
19秒前
称号炼金术师完成签到 ,获得积分10
22秒前
快乐的风完成签到,获得积分20
22秒前
24秒前
姜颀完成签到,获得积分10
25秒前
晚霞完成签到 ,获得积分10
25秒前
bzy发布了新的文献求助10
26秒前
蜗牛完成签到,获得积分10
26秒前
27秒前
yznfly应助minmi采纳,获得20
28秒前
chenloonglee发布了新的文献求助10
28秒前
29秒前
英姑应助蜗牛采纳,获得10
29秒前
30秒前
脑洞疼应助科研顺路采纳,获得10
31秒前
zxm完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793353
求助须知:如何正确求助?哪些是违规求助? 5747903
关于积分的说明 15485317
捐赠科研通 4920243
什么是DOI,文献DOI怎么找? 2648790
邀请新用户注册赠送积分活动 1596159
关于科研通互助平台的介绍 1550762