瓶颈
钯
聚类分析
计算机科学
同种类的
鉴定(生物学)
催化作用
工作流程
无监督学习
人工智能
生物信息学
组合化学
机器学习
化学
数学
数据库
生物
有机化学
植物
生物化学
组合数学
基因
嵌入式系统
作者
Julian A. Hueffel,Theresa Sperger,Ignacio Funes‐Ardoiz,Jas S. Ward,Kari Rissanen,Franziska Schoenebeck
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2021-11-25
卷期号:374 (6571): 1134-1140
被引量:120
标识
DOI:10.1126/science.abj0999
摘要
Although machine learning bears enormous potential to accelerate developments in homogeneous catalysis, the frequent need for extensive experimental data can be a bottleneck for implementation. Here, we report an unsupervised machine learning workflow that uses only five experimental data points. It makes use of generalized parameter databases that are complemented with problem-specific in silico data acquisition and clustering. We showcase the power of this strategy for the challenging problem of speciation of palladium (Pd) catalysts, for which a mechanistic rationale is currently lacking. From a total space of 348 ligands, the algorithm predicted, and we experimentally verified, a number of phosphine ligands (including previously never synthesized ones) that give dinuclear Pd(I) complexes over the more common Pd(0) and Pd(II) species.
科研通智能强力驱动
Strongly Powered by AbleSci AI