Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning

医学 分割 邦费罗尼校正 数据集 人工智能 放射科 肝细胞癌 腹部 卷积神经网络 标准差 核医学 内科学 统计 计算机科学 数学
作者
Alexander D. Weston,Panagiotis Korfiatis,Timothy L. Kline,Kenneth A. Philbrick,Petro Kostandy,Tomas Sakinis,Motokazu Sugimoto,Naoki Takahashi,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (3): 669-679 被引量:297
标识
DOI:10.1148/radiol.2018181432
摘要

Purpose To develop and evaluate a fully automated algorithm for segmenting the abdomen from CT to quantify body composition. Materials and Methods For this retrospective study, a convolutional neural network based on the U-Net architecture was trained to perform abdominal segmentation on a data set of 2430 two-dimensional CT examinations and was tested on 270 CT examinations. It was further tested on a separate data set of 2369 patients with hepatocellular carcinoma (HCC). CT examinations were performed between 1997 and 2015. The mean age of patients was 67 years; for male patients, it was 67 years (range, 29-94 years), and for female patients, it was 66 years (range, 31-97 years). Differences in segmentation performance were assessed by using two-way analysis of variance with Bonferroni correction. Results Compared with reference segmentation, the model for this study achieved Dice scores (mean ± standard deviation) of 0.98 ± 0.03, 0.96 ± 0.02, and 0.97 ± 0.01 in the test set, and 0.94 ± 0.05, 0.92 ± 0.04, and 0.98 ± 0.02 in the HCC data set, for the subcutaneous, muscle, and visceral adipose tissue compartments, respectively. Performance met or exceeded that of expert manual segmentation. Conclusion Model performance met or exceeded the accuracy of expert manual segmentation of CT examinations for both the test data set and the hepatocellular carcinoma data set. The model generalized well to multiple levels of the abdomen and may be capable of fully automated quantification of body composition metrics in three-dimensional CT examinations. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的柏柳完成签到,获得积分10
1秒前
2秒前
NexusExplorer应助科研通管家采纳,获得30
2秒前
ED应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
foam应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得20
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
雨夜星空应助科研通管家采纳,获得10
3秒前
Pothos应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
6秒前
希望天下0贩的0应助laochen采纳,获得10
12秒前
12秒前
英姑应助fnunu采纳,获得10
16秒前
21秒前
23秒前
冰魂应助奉宣室以何年采纳,获得10
24秒前
yangjinru完成签到 ,获得积分10
24秒前
26秒前
席田兰发布了新的文献求助10
27秒前
27秒前
解师完成签到,获得积分20
28秒前
laochen发布了新的文献求助10
28秒前
健壮问兰完成签到 ,获得积分10
29秒前
29秒前
stitch发布了新的文献求助10
30秒前
笑嘻嘻完成签到,获得积分10
31秒前
32秒前
研友_CCQ_M完成签到,获得积分10
33秒前
比大家发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878