重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Depression Episodes Detection in Unipolar and Bipolar Patients: A Methodology with Feature Extraction and Feature Selection with Genetic Algorithms Using Activity Motion Signal as Information Source

计算机科学 悲伤 特征选择 特征(语言学) 特征提取 信号(编程语言) 可穿戴计算机 人工智能 遗传算法 算法 机器学习 模式识别(心理学) 医学 语言学 哲学 愤怒 精神科 嵌入式系统 程序设计语言
作者
Carlos E. Galván-Tejada,Laura A. Zanella-Calzada,Hamurabi Gamboa-Rosales,Jorge I. Galván-Tejada,Nubia M. Chávez-Lamas,Ma. del Carmen Gracia-Cortés,Rafael Magallanes‐Quintanar,José M. Celaya-Padilla
出处
期刊:Mobile Information Systems [Hindawi Limited]
卷期号:2019: 1-12 被引量:18
标识
DOI:10.1155/2019/8269695
摘要

Depression is a mental disorder which typically includes recurrent sadness and loss of interest in the enjoyment of the positive aspects of life, and in severe cases fatigue, causing inability to perform daily activities, leading to a progressive loss of quality of life. Monitoring depression (unipolar and bipolar patients) stats relays on traditional method reports from patients; however, bias is commonly present, given the patients’ interpretation of the experiences. Nevertheless, to overcome this problem, Ecological Momentary Assessment (EMA) reports have been proposed and widely used. These reports includes data of the behaviour, feelings, and other type of activities recorded almost in real time using different types of portable devices, which nowadays include smartphones and other wearables such as smartwatches. In this study is proposed a methodology to detect depressive patients with the motion data generated by patient activity, recorded with a smartband, obtained from the “Depresjon” database. Using this signal as information source, a feature extraction approach of statistical features, in time and spectral evolution of the signal, is done. Subsequently, a clever feature selection with a genetic algorithm approach is done to reduce the amount of information required to give a fast noninvasive diagnostic. Results show that the feature extraction approach can achieve a value of 0.734 of area under the curve (AUC), and after applying feature selection approach, a model comprised by two features from the motion signal can achieve a 0.647 AUC. These results allow us to conclude that using the activity signal from a smartband, it is possible to distinguish between depressive states, providing a preliminary and automated tool to specialists for the diagnosis of depression almost in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
JTHan发布了新的文献求助10
1秒前
2秒前
2秒前
胡元军完成签到,获得积分10
2秒前
2秒前
uuu发布了新的文献求助10
2秒前
海豚发布了新的文献求助30
2秒前
2秒前
纪鸿发布了新的文献求助10
2秒前
吴彦祖完成签到,获得积分20
3秒前
Hui发布了新的文献求助10
4秒前
霸霸发布了新的文献求助10
4秒前
平淡的豁发布了新的文献求助10
4秒前
4秒前
4秒前
jerry发布了新的文献求助10
5秒前
iNk应助Prozac采纳,获得50
5秒前
混子完成签到,获得积分10
6秒前
小苏打发布了新的文献求助10
6秒前
隐形曼青应助Ruby采纳,获得10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
orixero应助uuu采纳,获得10
6秒前
TEDDY发布了新的文献求助10
6秒前
7秒前
lzxzx发布了新的文献求助10
7秒前
7秒前
风趣的洙发布了新的文献求助10
7秒前
诚心青曼完成签到,获得积分20
7秒前
8秒前
俊逸的问兰完成签到,获得积分10
8秒前
8秒前
浮游应助俏皮卿采纳,获得10
8秒前
CodeCraft应助Leng采纳,获得10
9秒前
9秒前
10秒前
10秒前
lihongchi发布了新的文献求助10
10秒前
斯文冷亦完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545