蛋白激酶B
磷酸化
生物
癌症研究
转录因子
分子生物学
PI3K/AKT/mTOR通路
染色质免疫沉淀
信号转导
细胞生物学
发起人
生物化学
基因表达
基因
作者
Shengyou Liao,I‐Ying Kuo,Yuting Chen,Pao‐Chi Liao,Yafen Liu,Hsin‐Yi Wu,Wu‐Wei Lai,Yi‐Ching Wang
出处
期刊:Oncogene
[Springer Nature]
日期:2019-08-09
卷期号:38 (41): 6723-6736
被引量:21
标识
DOI:10.1038/s41388-019-0928-x
摘要
ZNF322A is an oncogenic zinc-finger transcription factor. Our published results show that ZNF322A positively regulates transcription of alpha-adducin (ADD1) and cyclin D1 (CCND1) to promote tumorgenicity of lung cancer. However, the upstream regulatory mechanisms of ZNF322A protein function remain elusive. Here, we demonstrate that AKT could phosphorylate ZNF322A by in vitro kinase assay and cell-based mass spectrometry analysis. Overexpression of AKT promoted ZNF322A protein stability and transcriptional activity, whereas these effects were inhibited by knockdown of AKT or treating with AKT inhibitor. We studied AKT-mediated phosphorylation sites, viz. Thr-150, Ser-224, Thr-234, and Thr-262. ZNF322A phosphorylation at Thr-262 by AKT promoted ZNF322A protein stability thus increased ADD1 promoter activity. Interestingly, phosphorylation at Thr-150, Ser-224, and Thr-234 enhanced transcription activity without affecting protein stability of ZNF322A. Chromatin immunoprecipitation and DNA affinity precipitation assays showed that ZNF322A phosphorylation defective mutants Thr-150A, Ser-224A, and Thr-234A attenuated chromatin binding and DNA binding affinity to ADD1 and CCND1 promoters compared with wild-type ZNF322A. Furthermore, AKT-mediated Thr-150, Ser-224, Thr-234, and Thr-262 phosphorylation promoted lung cancer cell growth and metastasis in vitro and in vivo. Clinically, expression of phosphorylated ZNF322A (p-ZNF) correlated with actively phosphorylated AKT (p-AKT) in tumor specimens from 150 lung cancer patients. Multivariate Cox regression analysis indicated that combined p-AKT and p-ZNF expression profile was an independent factor to predict the clinical outcome in lung cancer patients. Our results reveal a new mechanism of AKT signaling in promoting ZNF322A protein stability and transcriptional activity in lung cancer cell, xenograft, and clinical models.
科研通智能强力驱动
Strongly Powered by AbleSci AI