Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis

杠杆(统计) 卷积神经网络 学习迁移 计算机科学 断层(地质) 样品(材料) 人工智能 机器学习 人工神经网络 试验数据 样本量测定 数据挖掘 统计 数学 程序设计语言 化学 地震学 地质学 色谱法
作者
Dengyu Xiao,Yixiang Huang,Chengjin Qin,Zhiyu Liu,Yanming Li,Chengliang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:233 (14): 5131-5143 被引量:80
标识
DOI:10.1177/0954406219840381
摘要

Data-driven machinery fault diagnosis has gained much attention from academic research and industry to guarantee the machinery reliability. Traditional fault diagnosis frameworks are commonly under a default assumption: the training and test samples share the similar distribution. However, it is nearly impossible in real industrial applications, where the operating condition always changes over time and the quantity of the same-distribution samples is often not sufficient to build a qualified diagnostic model. Therefore, transfer learning, which possesses the capacity to leverage the knowledge learnt from the massive source data to establish a diagnosis model for the similar but small target data, has shown potential value in machine fault diagnosis with small sample size. In this paper, we propose a novel fault diagnosis framework for the small amount of target data based on transfer learning, using a modified TrAdaBoost algorithm and convolutional neural networks. First, the massive source data with different distributions is added to the target data as the training data. Then, a convolutional neural network is selected as the base learner and the modified TrAdaBoost algorithm is employed for the weight update of each training sample to form a stronger diagnostic model. The whole proposition is experimentally demonstrated and discussed by carrying out the tests of six three-phase induction motors under different operating conditions and fault types. Results show that compared with other methods, the proposed framework can achieve the highest fault diagnostic accuracy with inadequate target data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
2秒前
2秒前
优秀芷波完成签到 ,获得积分10
3秒前
4秒前
lu关闭了lu文献求助
4秒前
彭静琳完成签到,获得积分20
4秒前
4秒前
5秒前
小满完成签到,获得积分20
5秒前
5秒前
烂漫悟空发布了新的文献求助10
6秒前
酷波er应助吉普赛大青蛙采纳,获得10
6秒前
oboul发布了新的文献求助10
7秒前
彭静琳发布了新的文献求助10
7秒前
浮浮世世发布了新的文献求助10
8秒前
9秒前
9秒前
superbanggg完成签到,获得积分10
10秒前
10秒前
weing发布了新的文献求助10
12秒前
babybenzol完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
科研顺利完成签到 ,获得积分10
18秒前
weing完成签到,获得积分10
19秒前
19秒前
茗泠发布了新的文献求助10
19秒前
20秒前
情怀应助科研式采纳,获得10
20秒前
xxfsx应助MO采纳,获得10
21秒前
周涨杰发布了新的文献求助10
21秒前
lululu完成签到 ,获得积分10
22秒前
奥沙利楠发布了新的文献求助10
24秒前
25秒前
oboul完成签到,获得积分10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343