Fast and Robust Attribute Reduction Based on the Separability in Fuzzy Decision Systems

可解释性 还原(数学) 计算机科学 过度拟合 人工智能 机器学习 数据挖掘 预处理器 模糊逻辑 数学 人工神经网络 几何学
作者
Meng Hu,Eric C.C. Tsang,Yanting Guo,Weihua Xu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 5559-5572 被引量:75
标识
DOI:10.1109/tcyb.2020.3040803
摘要

Attribute reduction is one of the most important preprocessing steps in machine learning and data mining. As a key step of attribute reduction, attribute evaluation directly affects classification performance, search time, and stopping criterion. The existing evaluation functions are greatly dependent on the relationship between objects, which makes its computational time and space more costly. To solve this problem, we propose a novel separability-based evaluation function and reduction method by using the relationship between objects and decision categories directly. The degree of aggregation (DA) of intraclass objects and the degree of dispersion (DD) of between-class objects are first defined to measure the significance of an attribute subset. Then, the separability of attribute subsets is defined by DA and DD in fuzzy decision systems, and we design a sequentially forward selection based on the separability (SFSS) algorithm to select attributes. Furthermore, a postpruning strategy is introduced to prevent overfitting and determine a termination parameter. Finally, the SFSS algorithm is compared with some typical reduction algorithms using some public datasets from UCI and ELVIRA Biomedical repositories. The interpretability of SFSS is directly presented by the performance on MNIST handwritten digits. The experimental comparisons show that SFSS is fast and robust, which has higher classification accuracy and compression ratio, with extremely low computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinjun完成签到,获得积分10
1秒前
平常的鞅完成签到,获得积分10
2秒前
科研通AI6应助宾果消消气采纳,获得10
2秒前
爆米花应助搞怪文轩采纳,获得10
4秒前
kasumin完成签到,获得积分10
4秒前
彩色铅笔完成签到,获得积分10
4秒前
7秒前
feijelly完成签到,获得积分10
7秒前
在水一方应助101采纳,获得10
9秒前
汉堡包应助An采纳,获得10
10秒前
思源应助mwiyi采纳,获得10
11秒前
11秒前
wjx发布了新的文献求助10
12秒前
16秒前
16秒前
羽化成仙完成签到 ,获得积分10
17秒前
17秒前
18秒前
20秒前
20秒前
大志发布了新的文献求助10
21秒前
Jasper应助安平采纳,获得10
21秒前
风中莫英完成签到,获得积分10
22秒前
习习完成签到 ,获得积分10
22秒前
阿泽完成签到,获得积分10
22秒前
懂123发布了新的文献求助30
23秒前
echo发布了新的文献求助10
23秒前
25秒前
风中莫英发布了新的文献求助20
25秒前
桑桑完成签到 ,获得积分10
26秒前
26秒前
27秒前
搞怪文轩发布了新的文献求助10
29秒前
echo完成签到,获得积分10
29秒前
NexusExplorer应助happyccch采纳,获得10
30秒前
二队淼队长完成签到,获得积分10
30秒前
mwiyi发布了新的文献求助10
31秒前
31秒前
33秒前
老刘不吃香菜完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4475336
求助须知:如何正确求助?哪些是违规求助? 3933724
关于积分的说明 12204890
捐赠科研通 3588380
什么是DOI,文献DOI怎么找? 1972914
邀请新用户注册赠送积分活动 1010570
科研通“疑难数据库(出版商)”最低求助积分说明 904170