人工神经网络
布朗运动
理论(学习稳定性)
运动(物理)
控制理论(社会学)
数学
计算机科学
应用数学
拓扑(电路)
统计物理学
物理
人工智能
控制(管理)
组合数学
机器学习
统计
作者
Zhang Chen,Dandan Yang
标识
DOI:10.1080/00207179.2020.1775307
摘要
This paper is concerned with Hopfield neural networks with unbounded time-varying delay driven by G-Brownian motion. The existence and uniqueness of solutions, as well as the continuity of solutions in the sense of G-mean square, are investigated for such neural networks. Moreover, sufficient conditions dependent on delay are derived to guarantee G-mean square asymptotic stability and G-mean square exponential stability of neural networks. At last, two examples are provided to illustrate the application of the obtained results.
科研通智能强力驱动
Strongly Powered by AbleSci AI