亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer

无线电技术 医学 肺癌 逻辑回归 接收机工作特性 随机森林 人工智能 机器学习 核医学 放射科 病理 内科学 计算机科学
作者
Seung Hyup Hyun,Mi Sun Ahn,Young Wha Koh,Su Jin Lee
出处
期刊:Clinical Nuclear Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:44 (12): 956-960 被引量:168
标识
DOI:10.1097/rlu.0000000000002810
摘要

Purpose We sought to distinguish lung adenocarcinoma (ADC) from squamous cell carcinoma using a machine-learning algorithm with PET-based radiomic features. Methods A total of 396 patients with 210 ADCs and 186 squamous cell carcinomas who underwent FDG PET/CT prior to treatment were retrospectively analyzed. Four clinical features (age, sex, tumor size, and smoking status) and 40 radiomic features were investigated in terms of lung ADC subtype prediction. Radiomic features were extracted from the PET images of segmented tumors using the LIFEx package. The clinical and radiomic features were ranked, and a subset of useful features was selected based on Gini coefficient scores in terms of associations with histological class. The areas under the receiver operating characteristic curves (AUCs) of classifications afforded by several machine-learning algorithms (random forest, neural network, naive Bayes, logistic regression, and a support vector machine) were compared and validated via random sampling. Results We developed and validated a PET-based radiomic model predicting the histological subtypes of lung cancer. Sex, SUVmax, gray-level zone length nonuniformity, gray-level nonuniformity for zone, and total lesion glycolysis were the 5 best predictors of lung ADC. The logistic regression model outperformed all other classifiers (AUC = 0.859, accuracy = 0.769, F1 score = 0.774, precision = 0.804, recall = 0.746) followed by the neural network model (AUC = 0.854, accuracy = 0.772, F1 score = 0.777, precision = 0.807, recall = 0.750). Conclusions A machine-learning approach successfully identified the histological subtypes of lung cancer. A PET-based radiomic features may help clinicians improve the histopathologic diagnosis in a noninvasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助研友_R2D2采纳,获得10
刚刚
7秒前
欣欣完成签到 ,获得积分10
12秒前
16秒前
22秒前
25秒前
研友_R2D2发布了新的文献求助10
31秒前
59秒前
VDC应助科研通管家采纳,获得30
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
鱿鱼起司发布了新的文献求助10
1分钟前
2分钟前
2分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
安年完成签到 ,获得积分10
4分钟前
5分钟前
汉堡包应助王王碎冰冰采纳,获得10
5分钟前
5分钟前
555557发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
555557完成签到,获得积分10
6分钟前
6分钟前
6分钟前
王王碎冰冰关注了科研通微信公众号
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553