启发式
计算机科学
灵活性(工程)
水准点(测量)
数学优化
运筹学
网格
线性规划
整数规划
工程类
算法
数学
操作系统
统计
大地测量学
地理
几何学
作者
G. Brandstätter,Markus Leitner,Ivana Ljubić
出处
期刊:Transportation Science
[Institute for Operations Research and the Management Sciences]
日期:2020-06-16
卷期号:54 (5): 1408-1438
被引量:62
标识
DOI:10.1287/trsc.2019.0931
摘要
Electric vehicles are prime candidates for use within urban car sharing systems, both from economic and environmental perspectives. However, their relatively short range necessitates frequent and rather time-consuming recharging throughout the day. Thus, charging stations must be built throughout the system’s operational area where cars can be charged between uses. In this work, we introduce and study an optimization problem that models the task of finding optimal locations and sizes for charging stations, using the number of expected trips that can be accepted (or their resulting revenue) as a gauge of quality. Integer linear programming formulations and construction heuristics are introduced, and the resulting algorithms are tested on grid-graph-based instances, as well as on real-world instances from Vienna. The results of our computational study show that the best-performing exact algorithm solves most of the benchmark instances to optimality and usually provides small optimality gaps for the remaining ones, whereas our heuristics provide high-quality solutions very quickly. Our algorithms also provide better solutions than a sequential approach that considers strategic and operational decisions separately. A cross-validation study analyzes the algorithms’ performance in cases where demand is uncertain and shows the advantage of combining individual solutions into a single consensus solution, and a simulation study investigates their behavior in car sharing systems that provide their customers with more flexibility regarding vehicle selection.
科研通智能强力驱动
Strongly Powered by AbleSci AI