化学
粘土矿物
环境化学
降级(电信)
化学工程
矿物学
计算机科学
电信
工程类
作者
Ning Chen,Guodong Fang,Changyin Zhu,Song Wu,Guangxia Liu,Dionysios D. Dionysiou,Xiaolei Wang,Juan Gao,Dongmei Zhou
标识
DOI:10.1016/j.jhazmat.2019.121819
摘要
Heterogeneously activated peroxymonosulfate (PMS)-based advanced oxidation technologies (AOTs) have received increasing attention in contaminated water remediation. However, PMS activation by reduced clay minerals (e.g., reduced Fe-bearing smectite clays) has rarely been explored. Herein, PMS decomposition by reduced Fe-bearing smectite clays was investigated, and the hydroxyl radical (OH) and sulfate radical (SO4-) formation mechanisms were elucidated. Reduced nontronite NAu-2 (R-NAu-2) activated PMS efficiently to induce rapid degradation of diethyl phthalate (DEP) within 30 s. Mössbauer spectroscopy, FTIR and XPS analyses substantiated that distorted trans-coordinated Fe(II)Fe(II)Fe(II)OH entities were mainly responsible for rapid electron transfer to regenerate clay surface Fe(II) for PMS activation. Chemical probe, radical quenching, and electron paramagnetic resonance (EPR) results confirmed that OH and SO4- were mainly bound to the clay surface rather than in bulk solution, which resulted in the rapid degradation of organic compounds such as DEP, sulfamethoxazole, phenol, chlortetracycline and benzoic acid. Anions such as Cl- and NO3- had a limited effect on DEP degradation, while HCO3- inhibited the DEP degradation due to the increase of reaction pH. This study provides a new PMS activation strategy using reduced Fe-bearing smectite clays that will contribute to rapid degradation of organic contaminants using PMS-based AOTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI