纳米技术
纳米材料
光合作用
人工光合作用
半导体
生化工程
化学
材料科学
催化作用
光催化
工程类
光电子学
生物化学
作者
Stefano Cestellos-Blanco,Hao Zhang,Ji Min Kim,Yue‐xiao Shen,Peidong Yang
出处
期刊:Nature Catalysis
[Nature Portfolio]
日期:2020-03-18
卷期号:3 (3): 245-255
被引量:357
标识
DOI:10.1038/s41929-020-0428-y
摘要
Photosynthetic semiconductor biohybrids integrate the best attributes of biological whole-cell catalysts and semiconducting nanomaterials. Enzymatic machinery enveloped in its native cellular environment offers exquisite product selectivity and low substrate activation barriers while semiconducting nanomaterials harvest light energy stably and efficiently. In this Review Article, we illustrate the evolution and advances of photosynthetic semiconductor biohybrids focusing on the conversion of CO2 to value-added chemicals. We begin by considering the potential of this nascent field to meet global energy challenges while comparing it to alternate approaches. This is followed by a discussion of the advantageous coupling of electrotrophic organisms with light-active electrodes for solar-to-chemical conversion. We detail the dynamic investigation of photosensitized microorganisms creating direct light harvesting within unicellular organisms while describing complementary developments in the understanding of charge transfer mechanisms and cytoprotection. Lastly, we focus on trends and improvements needed in photosynthetic semiconductor biohybrids in order to address future challenges and enhance their widespread adoption for the production of solar chemicals. Artificial photosynthetic technologies could potentially contribute to limiting global warming while providing useful chemicals for society. This Review Article covers photosynthetic semiconductor biohybrids—electrodes/nanomaterials coupled with microorganisms—for light-driven catalytic conversion of CO2 to fuels and other value-added chemicals.
科研通智能强力驱动
Strongly Powered by AbleSci AI